zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new coupled approach high accuracy numerical method for the solution of 3D non-linear biharmonic equations. (English) Zbl 1180.65137
Summary: We derive a new fourth order finite difference approximation based on arithmetic average discretization for the solution of three-dimensional non-linear biharmonic partial differential equations on a 19-point compact stencil using coupled approach. The numerical solutions of unknown variable $u(x,y,z)$ and its Laplacian $\nabla^2u$ are obtained at each internal grid point. The resulting stencil algorithm is presented which can be used to solve many physical problems. The proposed method allows us to use the Dirichlet boundary conditions directly and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. The new method is tested on three problems and the results are compared with the corresponding second order approximation, which we also discuss using coupled approach.

65N06Finite difference methods (BVP of PDE)
35J66Nonlinear boundary value problems for nonlinear elliptic equations
65N15Error bounds (BVP of PDE)
Full Text: DOI
[1] Atlas, I.; Erhel, J.; Gupta, M. M.: High accuracy solution of three-dimensional biharmonic equations, Numer. algorithms 29, 01-19 (2002) · Zbl 0992.65115 · doi:10.1023/A:1014866618680
[2] Bauer, L.; Riess, E. L.: Block five diagonal matrices and the fast numerical solution of the biharmonic equation, Math. comput. 26, 311-326 (1972) · Zbl 0257.65034 · doi:10.2307/2005160
[3] Chen, G.; Li, Z.; Lin, P.: A first finite difference method for biharmonic equations on irregular domains and its applications to an incompressible Stokes flow, Adv. comput. Math. 29, 113-133 (2008) · Zbl 1241.76324
[4] Dehghan, M.; Mohebbi, A.: Multi-grid solution of high order discretization for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind, Appl. math. Comput. 180, 575-593 (2006) · Zbl 1102.65125 · doi:10.1016/j.amc.2005.12.037
[5] Ehrlich, L. W.: Solving the biharmonic equation as coupled finite difference equations, SIAM J. Numer. anal. 8, 278-287 (1971) · Zbl 0215.55702 · doi:10.1137/0708029
[6] Ehrlich, L. W.: Point and block SOR applied to a coupled set of difference equations, Computing 12, 181-194 (1974) · Zbl 0276.65051 · doi:10.1007/BF02293104
[7] Evans, D. J.; Mohanty, R. K.: Block iterative methods for the numerical solution of two-dimensional non-linear biharmonic equations, Int. J. Comput. math. 69, 371-390 (1998) · Zbl 0933.65124 · doi:10.1080/00207169808804729
[8] Glowinski, R.; Pironneau, O.: Numerical methods for the first biharmonic equations and for the two-dimensional Stokes probem, SIAM rev. 21, 167-212 (1979) · Zbl 0427.65073 · doi:10.1137/1021028
[9] Hageman, L. A.; Young, D. M.: Applied iterative methods, (2004) · Zbl 1059.65028
[10] Kelly, C. T.: Iterative methods for linear and non-linear equations, (1995)
[11] Kwon, Y.; Manohar, R.; Stephenson, J. W.: Single cell fourth order methods for the biharmonic equation, Congr. numer. 34, 475-482 (1982) · Zbl 0539.65071
[12] Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. anal. 21, 285-299 (1984) · Zbl 1131.65303 · doi:10.1137/0721021
[13] Meurant, G.: Computer solution of large linear systems, (1999) · Zbl 0934.65032
[14] Mohanty, R. K.; Pandey, P. K.: Difference methods of order two and four for systems of mildly non-linear biharmonic problems of second kind in two space dimensions, Numer. methods partial differ. Equations 12, 707-717 (1996) · Zbl 0863.65067 · doi:10.1002/(SICI)1098-2426(199611)12:6<707::AID-NUM4>3.0.CO;2-W
[15] Mohanty, R. K.; Singh, Swarn: A new fourth order discretization for singularly perturbed two-dimensional non-linear elliptic boundary value problems, Appl. math. Comput. 175, 1400-1414 (2006) · Zbl 1093.65103 · doi:10.1016/j.amc.2005.08.023
[16] Mohanty, R. K.; Singh, Swarn: A new highly accurate discretization for three dimensional singularly perturbed non-linear elliptic partial differential equations, Numer. methods partial differ. Equations 22, 1379-1395 (2006) · Zbl 1108.65105 · doi:10.1002/num.20160
[17] R.K. Mohanty, A new high accuracy finite difference discretization for the solution of 2D non-linear biharmonic equations using coupled approach, Numer. Methods Partial Differ. Equations, in press, doi:10.1002/num.20465.
[18] Parter, S. V.: M.h.schultzblock iterative methods in elliptic problem solvers, Block iterative methods in elliptic problem solvers (1981) · Zbl 0464.65020
[19] Saad, Y.: Iterative methods for sparse linear systems, (2003) · Zbl 1031.65046
[20] Smith, J.: The coupled equation approach to the numerical solution of the biharmonic equation by finite differences, SIAM J. Numer. anal. 5, 104-111 (1970) · Zbl 0223.65078 · doi:10.1137/0707005
[21] Spotz, W. F.; Carey, G. F.: High-order compact scheme for the steady stream-function vorticity equations, Int. J. Numer. methods eng. 38, 3497-3512 (1995) · Zbl 0836.76065 · doi:10.1002/nme.1620382008
[22] Stephenson, J. W.: Single cell discretization of order two and four for biharmonic problems, J. comput. Phys. 55, 65-80 (1984) · Zbl 0542.65051 · doi:10.1016/0021-9991(84)90015-9
[23] Varga, R. S.: Matrix iterative analysis, (2000) · Zbl 0998.65505