Tarasov, Vasily E. Fractional vector calculus and fractional Maxwell’s equations. (English) Zbl 1180.78003 Ann. Phys. 323, No. 11, 2756-2778 (2008). The fractional calculus has a long history, dating from 30 September 1695 when a derivative of order \(1/2\) was described by Leibniz. However, the history of the fractional vector calculus (FVC) is short, as it dates back only 10 years. This paper describes some different approaches to the formulation of the FVC which have been used in physics dring the last 10 years. Various generalizations are given, including the fractional Green’s and Stokes’ theorems, and also the theorems due to Gauss. Reviewer: Alan Jeffrey (Newcastle upon Tyne) Cited in 1 ReviewCited in 103 Documents MSC: 78A02 Foundations in optics and electromagnetic theory 78A25 Electromagnetic theory (general) Keywords:fractional vector calculus; derivatives and integrals of non-integer orders; fractal media; fractional electrodynamics PDF BibTeX XML Cite \textit{V. E. Tarasov}, Ann. Phys. 323, No. 11, 2756--2778 (2008; Zbl 1180.78003) Full Text: DOI arXiv References: [1] Oldham, K. B.; Spanier, J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), Academic Press: Academic Press New York · Zbl 0292.26011 [2] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York · Zbl 0818.26003 [3] Miller, K.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley: Wiley New York · Zbl 0789.26002 [4] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010 [5] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Application of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003 [6] Ross, B., A brief history and exposition of the fundamental theory of fractional calculus, Lect. Notes Math., 457, 1-36 (1975) [7] McBride, A. C., Fractional Calculus and Integral Transforms of Generalized Functions (1979), Pitman Press: Pitman Press San Francisco · Zbl 0423.46029 [8] Nishimoto, K., Fractional Calculus: Integrations and Differentiations of Arbitrary Order (1989), University of New Haven Press: University of New Haven Press New Haven · Zbl 0798.26005 [9] Zaslavsky, G. M., Hamiltonian Chaos and Fractional Dynamics (2005), Oxford University Press: Oxford University Press Oxford · Zbl 1080.37082 [10] (Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics (1997), Springer: Springer Wien) · Zbl 0917.73004 [11] West, B.; Bologna, M.; Grigolini, P., Physics of Fractal Operators (2003), Springer: Springer New York [12] (Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific: World Scientific Singapore) · Zbl 0998.26002 [13] Zaslavsky, G. M., Phys. Rep., 371, 461-580 (2002) [14] Montroll, E. W.; Shlesinger, M. F., The wonderful world of random walks, (Lebowitz, J.; Montroll, E., Studies in Statistical Mechanics, vol. 11 (1984), North-Holland: North-Holland Amsterdam), 1-121 · Zbl 0556.60027 [15] Metzler, R.; Klafter, J., J. Phys. A, 37, R161-R208 (2004) [16] Ben Adda, F., J. Fractional Calculus, 11, 21-52 (1997) [17] Ben Adda, F., C.R. Acad. Sci. I-Math., 326, 7, 787-791 (1998) [18] Engheta, N., Microwave Opt. Technol. Lett., 17, 2, 86-91 (1998) [20] Hussain, A.; Ishfaq, S.; Naqvi, Q. A., Prog. Electromagn. Res., 63, 319-335 (2006) [23] Chen, Yong; Yan, Zhen-ya; Zhang, Hong-qing, Appl. Math. Mechanics, 24, 3, 256-260 (2003) [24] Kazbekov, K. K., Vladikavkaz Math. J., 7, 2, 41-54 (2005), (in Russian), Available at: <http://www.vmj.ru/articles/2005_2_5.pdf>. [25] Tarasov, V. E., Mod. Phys. Lett. A, 21, 1587-1600 (2006) [26] Tarasov, V. E., Lett. Math. Phys., 73, 49-58 (2005), nlin.CD/0604007 [27] Tarasov, V. E., Chaos, 16, 033108 (2006) [28] Tarasov, V. E.; Zaslavsky, G. M., Physica A, 354, 249-261 (2005), physics/0511144 [29] Tarasov, V. E., Phys. Lett. A, 341, 467-472 (2005) [30] Gelfand, I. M.; Shilov, G. E., Generalized functions, vol. 1 (1964), Academic Press: Academic Press New York and London · Zbl 0115.33101 [31] Brandt, E. H., Phys. Lett. A, 39, 3, 227-228 (1972) [32] Foley, J. T.; Devaney, A. J., Phys. Rev. B, 12, 3104-3112 (1975) [33] Belleguie, L.; Mukamel, S., J. Chem. Phys., 101, 11, 9719-9735 (1994) [34] Genchev, Z. D., Supercond. Sci. Technol., 10, 543-546 (1997) [35] Mashhoon, B., Phys. Rev. A, 72, 052105 (2005) [36] Pierantozzi, T.; Vazquez, L., J. Math. Phys., 46, 113512 (2005) [37] Laskin, N.; Zaslavsky, G. M., Physica A, 368, 38-54 (2006), nlin.SI/0512010 [38] Tarasov, V. E.; Zaslavsky, G. M., Commun. Nonlin. Sci. Numer. Simul., 11, 885-898 (2006), nlin.PS/0512013 [40] Tarasov, V. E., J. Phys. A, 39, 14895-14910 (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.