×

zbMATH — the first resource for mathematics

Hamiltonian theory of anyons in crystals. (English. Russian original) Zbl 1180.81065
J. Math. Sci., New York 151, No. 4, 3159-3166 (2008); translation from Fundam. Prikl. Mat. 12, No. 7, 129-139 (2006).
Summary: Semiclassical wave packets for electrons in crystals, subject to an external electromagnetic field, satisfy Hamiltonian equations. In \((2+1)\)-dimensions and in the limit of uniform fields, the symmetry group results in a two-folded Galilei algebra, incorporating an “exotic” central charge. It has the physical meaning of the Berry phase curvature. In the Hamiltonian scheme, we discuss possible deformations of this algebra and the physical meaning of what takes place.
MSC:
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
81V70 Many-body theory; quantum Hall effect
82D25 Statistical mechanical studies of crystals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, Philadelphia (1976).
[2] H. Bacry, ”Wigner elementary particle in an external homogeneous field,” Lett. Math. Phys., 1, 295–299 (1976). · doi:10.1007/BF00398484
[3] A. Bérard and H. Mohrbach, ”Monopole and Berry phase in momentum space in noncommutative quantum mechanics,” Phys. Rev., D69, 127701 (2004).
[4] A. Bérard and H. Mohrbach, ”Spin Hall effect and Berry phase of spinning particles,” Phys. Lett., A352, 190–195 (2006). · Zbl 1187.81143
[5] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger, Geometric Phase in Quantum Systems, Springer-Verlag (2003). · Zbl 1039.81003
[6] Y. Brihaye, C. Gonera, S. Giller, and P. Kosiński, Galilean invariance in 2 + 1 dimensions, E-print hep-th/9503046 (1995).
[7] M. C. Chang and Q. Niu, ”Berry phase, hyperorbits, and the Hofstadter spectrum,” Phys. Rev. Lett., 75, 1348–1351 (1995). · doi:10.1103/PhysRevLett.75.1348
[8] M. C. Chang and Q. Niu, ”Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands,” Phys. Rev., B53, 7010–7023 (1996).
[9] D. Culcer, A. H. MacDonald, and Q. Niu, ”Anomalous Hall effect in paramagnetic two-dimensional systems,” Phys. Rev., B68, 045327 (2003).
[10] C. Duval, Thèse de 3e cycle, Marseille (1972).
[11] C. Duval and P. A. Horváthy, ”The exotic Galilei group and the ’Peierls substitution’,” Phys. Lett., B479, 284–290 (2000). · Zbl 1050.81568
[12] C. Duval and P. A. Horváthy, ”Exotic Galilean symmetry in the noncommutative plane and the Hall effect,” J. Phys., A34, 10097–10107 (2001). · Zbl 0993.81029
[13] C. Duval and P. A. Horváthy, ”Anyons with anomalous gyromagnetic ratio and the Hall effect,” Phys. Lett., B594, 402–409 (2004); E-print hep-th/0402191.
[14] G. Grignani, M. Plyushchay, and P. Sodano, ”A pseudoclassical model for P, T-invariant planar fermions,” Nucl. Phys., B464, 189–212 (1996); E-print hep-th/9511072. · Zbl 1004.81552 · doi:10.1016/0550-3213(96)00062-4
[15] D. R. Grigore, ”The projective unitary irreducible representations of the Galilei group in 1 + 2 dimensions,” J. Math. Phys., 37, No. 1, 460–473 (1996). · Zbl 0869.22015 · doi:10.1063/1.531402
[16] D. R. Grigore, ”Transitive symplectic manifolds in 1 + 2 dimensions,” J. Math. Phys., 37, No. 1, 240–253 (1996). · Zbl 0862.58021 · doi:10.1063/1.531388
[17] P. Horváthy, L. Martina, and P. Stichel, ”Comments on spin-orbit interaction of anyons,” Mod. Phys. Lett., A20, 1177–1185 (2005). · Zbl 1067.81561
[18] P. A. Horváthy, L. Martina, and P. C. Stichel, ”Enlarged Galilean symmetry of anyons and the Hall effect,” Phys. Lett., B615, 87 (2005).
[19] P. A. Horváthy and M. S. Plyushchay, Nonrelativistic anyons in external electromagnetic field, E-print hep-th/0502040.
[20] P. A. Horváthy and M. S. Plyushchay, Nonrelativistic anyons, exotic Galilean symmetry and non-commutative plane, E-print hep-th/0201228.
[21] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett., 90, 207208 (2002). · doi:10.1103/PhysRevLett.88.207208
[22] R. Karplus and J. M. Luttinger, ”Hall effect in ferromagnetics,” Phys. Rev., 95, 1154–1160 (1954). · Zbl 0058.45603 · doi:10.1103/PhysRev.95.1154
[23] R. B. Laughlin, ”Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., 50 1395–1398 (1983). · doi:10.1103/PhysRevLett.50.1395
[24] J.-M. Lévy-Leblond, ”Galilei group and Galilean invariance,” in: Group Theory and Applications, Academic Press, New York (1972), p. 222.
[25] J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, Ann. Phys. (N.Y.) 260, 224 (1997). · Zbl 0974.37041 · doi:10.1006/aphy.1997.5729
[26] J. Negro, M. A. Del Olmo, and J. Tosiek, ”Anyons, group theory and planar physics,” J. Math. Phys., 47 (2006). · Zbl 1111.81079
[27] K. S. Novoselov et al., Nature Phys., 2, 177 (2006). · doi:10.1038/nphys245
[28] B. S. Skagerstam and A. Stern, Phys. Scr. 24, 493 (1981). · doi:10.1088/0031-8949/24/3/002
[29] G. Sundaram and Q. Niu, ”Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects,” Phys. Rev., B59, 14915–14925 (1999).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.