×

zbMATH — the first resource for mathematics

Three-coloring statistical model with domain wall boundary conditions: functional equations. (English. Russian original) Zbl 1180.82195
Theor. Math. Phys. 161, No. 1, 1325-1339 (2009); translation from Teor. Mat. Fiz. 161, No. 1, 3-20 (2009).
Summary: We consider the Baxter three-coloring model with boundary conditions of the domain wall type. In this case, it can be proved that the partition function satisfies some functional equations similar to the functional equations satisfied by the partition function of the six-vertex model for a special value of the crossing parameter.

MSC:
82D25 Statistical mechanical studies of crystals
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] R. J. Baxter, J. Math. Phys., 11, 3116–3124 (1970). · Zbl 0211.26904 · doi:10.1063/1.1665102
[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, London (1982). · Zbl 0538.60093
[3] Yu. G. Stroganov, ”General properties and special solutions of the triangle equation: Calculation of the partition functions for several models on a planar lattice [in Russian],” Candidate’s dissertation, Inst. High Energy Physics, Protvino (1982).
[4] Yu. G. Stroganov, Phys. Lett. A, 74, 116–118 (1979). · doi:10.1016/0375-9601(79)90601-7
[5] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (4th ed.), Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[6] A. Lenard, J. Math. Phys., 2, 682–693 (1961). · Zbl 0104.44604 · doi:10.1063/1.1703757
[7] Yu. G. Stroganov, Theor. Math. Phys., 146, 53–62 (2006); arXiv:math-ph/0204042v3 (2002). · Zbl 1177.82042 · doi:10.1007/s11232-006-0006-8
[8] A. V. Razumov and Yu. G. Stroganov, Theor. Math. Phys., 141, 1609–1630 (2004); arXiv:math-ph/0312071v1 (2003). · Zbl 1178.05011 · doi:10.1023/B:TAMP.0000049757.07267.9d
[9] A. G. Izergin, Sov. Phys. Dokl., 32, 878–879 (1987).
[10] V. E. Korepin, Comm. Math. Phys., 86, 391–418 (1982). · Zbl 0531.60096 · doi:10.1007/BF01212176
[11] P. A. Pearce and K. A. Seaton, Phys. Rev. Lett., 60, 1347–1350 (1988). · doi:10.1103/PhysRevLett.60.1347
[12] R. J. Baxter, Ann. Phys., 76, 25–47 (1973). · Zbl 1092.82513 · doi:10.1016/0003-4916(73)90440-5
[13] H. Rosengren, Adv. Appl. Math., 43, 137–155 (2009); arXiv:0801.1229v2 [math.CO] (2008). · Zbl 1173.05300 · doi:10.1016/j.aam.2009.01.003
[14] N. M. Bogoliubov, A. G. Izergin, and V. E. Korepin, Correlation Functions of Integrable Systems and Quantum Method of the Inverse Problem [in Russian], Nauka, Moscow (1992). · Zbl 0880.47003
[15] G. Kuperberg, Internat. Math. Res. Notices, 1996, 139–150 (1996); arXiv:math/9712207v1 (1997). · Zbl 0859.05027 · doi:10.1155/S1073792896000128
[16] W. H. Mills, D. P. Robbins, and H. Rumsey Jr., J. Combin. Theory A, 34, 340–359 (1983). · Zbl 0516.05016 · doi:10.1016/0097-3165(83)90068-7
[17] W. H. Mills, D. P. Robbins, and H. Rumsey Jr., Invent. Math., 66, 73–87 (1982). · Zbl 0477.05011 · doi:10.1007/BF01404757
[18] D. Zeilberger, New York J. Math., 2, 59–68 (1996); arXiv:math/9606224v1 (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.