×

Continuous-time multiobjective optimization problems via invexity. (English) Zbl 1180.90286

Summary: We introduce some concepts of generalized invexity for the continuous-time multiobjective programming problems, namely, the concepts of Karush-Kuhn-Tucker invexity and Karush-Kuhn-Tucker pseudoinvexity. Using the concept of Karush-Kuhn-Tucker invexity, we study the relationship of the multiobjective problems with some related scalar problems. Further, we show that Karush-Kuhn-Tucker pseudoinvexity is a necessary and sufficient condition for a vector Karush-Kuhn-Tucker solution to be a weakly efficient solution.

MSC:

90C29 Multi-objective and goal programming
90C26 Nonconvex programming, global optimization
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] R. Bellman, “Bottleneck problems and dynamic programming,” Proceedings of the National Academy of Sciences of the United States of America, vol. 39, pp. 947-951, 1953. · Zbl 0053.27903 · doi:10.1073/pnas.39.9.947
[2] E. J. Anderson and A. B. Philpott, “On the solutions of a class of continuous linear programs,” SIAM Journal on Control and Optimization, vol. 32, no. 5, pp. 1289-1296, 1994. · Zbl 0812.90114 · doi:10.1137/S0363012992227216
[3] A. J. V. Brandão, M. A. Rojas-Medar, and G. N. Silva, “Nonsmooth continuous-time optimization problems: necessary conditions,” Computers & Mathematics with Applications, vol. 41, no. 12, pp. 1477-1486, 2001. · Zbl 1017.90124 · doi:10.1016/S0898-1221(01)00112-2
[4] R. C. Grinold, “Continuous programming part one: linear objectives,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 32-51, 1969. · Zbl 0218.90055 · doi:10.1016/0022-247X(69)90106-1
[5] N. Levinson, “A class of continuous linear programming problems,” Journal of Mathematical Analysis and Applications, vol. 16, no. 1, pp. 73-83, 1966. · Zbl 0141.35601 · doi:10.1016/0022-247X(66)90187-9
[6] M. C. Pullan, “An algorithm for a class of continuous linear programs,” SIAM Journal on Control and Optimization, vol. 31, no. 6, pp. 1558-1577, 1993. · Zbl 0833.90124 · doi:10.1137/0331073
[7] T. W. Reiland and M. A. Hanson, “Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems,” Journal of Mathematical Analysis and Applications, vol. 74, no. 2, pp. 578-598, 1980. · Zbl 0437.49036 · doi:10.1016/0022-247X(80)90149-3
[8] M. A. Rojas-Medar, A. J. V. Brandão, and G. N. Silva, “Nonsmooth continuous-time optimization problems: sufficient conditions,” Journal of Mathematical Analysis and Applications, vol. 227, no. 2, pp. 305-318, 1998. · Zbl 0926.49009 · doi:10.1006/jmaa.1998.6024
[9] G. J. Zalmai, “Optimality conditions and Lagrangian duality in continuous-time nonlinear programming,” Journal of Mathematical Analysis and Applications, vol. 109, no. 2, pp. 426-452, 1985. · Zbl 0589.90069 · doi:10.1016/0022-247X(85)90160-X
[10] G. J. Zalmai, “A continuous-time generalization of Gordan’s transposition theorem,” Journal of Mathematical Analysis and Applications, vol. 110, no. 1, pp. 130-140, 1985. · Zbl 0586.90094 · doi:10.1016/0022-247X(85)90339-7
[11] G. J. Zalmai, “The Fritz John and Kuhn-Tucker optimality conditions in continuous-time nonlinear programming,” Journal of Mathematical Analysis and Applications, vol. 110, no. 2, pp. 503-518, 1985. · Zbl 0603.90135 · doi:10.1016/0022-247X(85)90312-9
[12] G. J. Zalmai, “Sufficient optimality conditions in continuous-time nonlinear programming,” Journal of Mathematical Analysis and Applications, vol. 111, no. 1, pp. 130-147, 1985. · Zbl 0579.49019 · doi:10.1016/0022-247X(85)90206-9
[13] L. B. dos Santos, A. J. V. Brandão, R. Osuna-Gómez, and M. A. Rojas-Medar, “Nonsmooth continuous-time multiobjective optimization problems,” Tech. Rep., State University of Campinas, São Paulo, Brazil, 2005, http://www.ime.unicamp.br/rel_pesq/2005/rp35-05.html.
[14] R. Osuna-Gómez, A. Rufián-Lizana, and P. Ruíz-Canales, “Invex functions and generalized convexity in multiobjective programming,” Journal of Optimization Theory and Applications, vol. 98, no. 3, pp. 651-661, 1998. · Zbl 0921.90133 · doi:10.1023/A:1022628130448
[15] R. Osuna-Gómez, A. Beato-Moreno, and A. Rufián-Lizana, “Generalized convexity in multiobjective programming,” Journal of Mathematical Analysis and Applications, vol. 233, no. 1, pp. 205-220, 1999. · Zbl 0928.90083 · doi:10.1006/jmaa.1999.6284
[16] V. A. de Oliveira and M. A. Rojas-Medar, “Continuous-time optimization problems involving invex functions,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1320-1334, 2007. · Zbl 1160.90005 · doi:10.1016/j.jmaa.2006.05.005
[17] O. L. Mangasarian, Nonlinear Programming, vol. 10 of Classics in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994. · Zbl 0833.90108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.