[1] |
Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004) |

[2] |
Hara, S., Hayakawa, T., & Sugata, H. (2007). Stability analysis of linear systems with generalized frequency variables and its application to formation control. In Proc. of the conf. on decision and control (pp. 1459-1466) |

[3] |
Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 998-1001 (2003) |

[4] |
Kim, T. -H., & Hara, S. (2008). Stabilization of multi-agent dynamical systems for cyclic pursuit behavior. In Proc. of the conf. on decision and control (pp. 4370-4375) |

[5] |
Lancaster, P.; Tismenetsky, M.: The theory of matrices, (1985) · Zbl 0558.15001 |

[6] |
Lin, Z.: Low gain feedback, (1999) · Zbl 0927.93001 |

[7] |
Olfati-Saber, R.; Fax, J. A.; Murray, R. M.: Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95, No. 1, 215-233 (2007) |

[8] |
Pecora, L. M.; Carroll, T. L.: Master stability functions for synchronized coupled systems, Physical review letters 80, No. 10, 2109-2112 (1998) |

[9] |
Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008) |

[10] |
Ren, W., Moore, K., & Chen, Y. (2006). High-order consensus algorithms in cooperative vehicle systems. In Proc. of int. conf. on networking, sensing and control (pp. 457-462) |

[11] |
Ren, W.; Beard, R. W.; Atkins, E. M.: Information consensus in multivehicle cooperative control: collective group behavior through local interaction, IEEE control systems magazine 27, No. 2, 71-82 (2007) |

[12] |
Scardovi, L., & Sepulchre, R. (2008). Synchronization in networks of identical linear systems. In Proc. of conf. on decision and control (pp. 546-551) · Zbl 1183.93054 |

[13] |
Seo, J. H., Shim, H., & Back, J. (2009a). Consensus and synchronization of linear high-order systems via output coupling. In Proc. of European control conference (pp. 767-772) |

[14] |
Seo, J. H., Shim, H., & Back, J. (2009b). High-order consensus of MIMO linear dynamic systems via stable compensator. In Proc. of European control conference (pp. 773-778) · Zbl 1180.93005 |

[15] |
Tuna, S. E.: Synchronizing linear systems via partial-state coupling, Automatica 44, No. 8, 2179-2184 (2008) · Zbl 1283.93028 |

[16] |
Tuna, S. E. (2008b). Conditions for synchronizability in arrays of coupled linear systems. arXiv:0811.3530v1 [math.DS] (available from http://arxiv.org/abs/0811.3530) |

[17] |
Wang, J.; Cheng, A.; Hu, X.: Consensus of multi-agent linear dynamic systems, Asian journal of control 10, No. 2, 144-155 (2008) |

[18] |
Wieland, P., Kim, J. -S., Scheu, H., & AllgĂ¶wer, F. (2008). On consensus in multi-agent systems with linear high-order agents. In Proc. 17th IFAC world congress (pp. 1541-1546) |

[19] |
Willems, J. C.: Least square stationary optimal control and the algebraic Riccati equation, IEEE transactions on automatic control 26, No. 6, 621-634 (1971) |