zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fault tolerant control for uncertain time-delay systems based on sliding mode control. (English) Zbl 1180.93087
Summary: Fault tolerant control for uncertain systems with time varying state-delay is studied in this paper. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some Linear Matrix Inequalities (LMIs), a delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can be seen as a fault tolerant controller, can retain the stability of the closed loop system in the present of uncertainties, disturbances and actuator fault is designed. A numerical simulation shows the effectiveness of the approach.

MSC:
93D09Robust stability of control systems
34K35Functional-differential equations connected with control problems
93C23Systems governed by functional-differential equations
93B40Computational methods in systems theory
WorldCat.org
Full Text: Link EuDML
References:
[1] Cheng C., Zhao Q.: Reliable control of uncertain delayed systems with integral quadratic constraints. IEE Proc. Control Theory Appl. 151 (2004), 790-796
[2] Edwards, Ch., Tan C. P.: Fault tolerant control using sliding mode observers. Conference on Decision and Control. Tlantis, Paradise Island, 2004, pp. 5254-5259
[3] Gouaisbaut F., Dambrine, M., Richard J. P.: Robust control of delay systems: a sliding mode control design via LMI. Systems Control Lett. 46 (2002), 219-230 · Zbl 0994.93004 · doi:10.1016/S0167-6911(01)00199-2
[4] Hu K. J., Basker V. R., Crisalle O. D.: Sliding mode control of uncertain input-delay systems. Proc. American Control Conference. Philadelphia 1998, pp. 564-568
[5] Koshkouei A. J., Zinober: Sliding mode time-delay systems. Proc. IEEE International Workshop on Variable Structure Systems, Tokyo 1996, pp. 97-101
[6] Kreindle E., Jameson A.: Conditions for nonnegatives of portioned matrices. IEEE Trans. Automat. Control 17 (1972), 147-148 · Zbl 0262.15015 · doi:10.1109/TAC.1972.1099894
[7] Kyeong T., Yeu S. K.: Sliding mode observer based fault detection and isolation in descriptor systems. American Control Conference, Anchorage 2002, pp. 4543-4548
[8] Li X., Decarlo R. A.: Memoryless sliding mode control of uncertain time-delay systems. Proc. American Control Conference, Arlington 2001, pp. 4344-4350
[9] Liu G. Y., Li Y. C.: Active fault tolerant control with actuation reconfiguration. IEEE Trans. Aerospace and Electronic Systems 40 (2004), 1110-1117
[10] Mahmoud M. S. N.F.A.-M.: Quadratic stabilization of continuous time systems with state-delay and norm-bounded time-delay uncertainties. IEEE Trans. Automat. Control 39 (1994), 2135-2139 · Zbl 0925.93585 · doi:10.1109/9.328812
[11] Niu Y., Lam J., Wang, X., Ho W. W. C.: Sliding mode control for nonlinear state-delayed systems using neural network approximation. IEE Proc. Control Theory Appl. 150 (2003), 233-239
[12] Niu J. L. Y., Wang, X., Ho D. W. C.: Observer-based sliding mode control for nonlinear state-delayed systems. Internat. J. Systems Sci. 35 (2004), 139-150 · Zbl 1059.93025 · doi:10.1080/00207720410001671732
[13] Parlakci M. N. A.: Robust stability of uncertain time-varying state-delayed systems. IEE Proc. Control Theory Appl. 153 (2006), 469-477
[14] Petersen I. R.: A stabilization algorithm for a class of uncertain linear systems. Systems Control Lett. 8 (1987), 351-357 · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[15] Tan, Ch. P., Edwards C.: Multiplicative fault reconstruction using sliding mode observers. Proc. 5th Asian Control Conference 2004, pp. 957-962
[16] Wang J. Z., Ma L.: A robust fault detection and isolation method via sliding mode observer. Proc. 5th World Congress on Intelligent Control and Automation, Hangzhou 2004, pp. 1727-1730
[17] Xia Y. J.: Robust sliding-mode control for uncertain time-delay systems: An LMI approach. IEEE Trans. Automat. Control 48 (2003), 1086-1092
[18] Xiong Y., Saif M.: Robust and nonlinear fault diagnosis using sliding mode observers. IEEE Conference on Decision and Control, Orlando 2001, pp. 567-572
[19] Yan X.-G., Edwards C.: Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems. 44th IEEE Conference on Decision and Control, Seville 2005, pp. 987-992 · Zbl 1168.93324 · doi:10.1080/00207720701778395