×

zbMATH — the first resource for mathematics

On mixing rate and convergence to stationary regime in discrete time Erlang problem. (On mixing rate and convegence to stationary regime in discrete time Erlang problem.) (English. Russian original) Zbl 1180.93097
Autom. Remote Control 70, No. 12, 1992-2002 (2009); translation from Avtom. Telemekh. 2009, No. 12, 59-70 (2009).
Summary: Sufficient conditions for polynomial convergence rate to the stationary regime and beta-mixing for some classes of ergodic discrete time birth-death processes are established.
MSC:
93E03 Stochastic systems in control theory (general)
93C55 Discrete-time control/observation systems
60J75 Jump processes (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Erlang, A.K., The Theory of Probabilities and Telephone Conversations, Nyt Tidsskrift Mat. Ser. B, 1909, vol. 20, pp. 33–39.
[2] Tuominen, P. and Tweedie, R.L., Subgeometric Rates of Convergence of f-ergodic Markov Chains, Adv. Appl. Probab., 1994, vol. 26, no. 3, pp. 775–798. · Zbl 0803.60061 · doi:10.1017/S0001867800026549
[3] Veretennikov, A.Yu., Estimating the Mixing Rate for Markov Processes, Lithuanian Math. J., 1991, vol. 31, no. 1, pp. 27–34. · Zbl 0786.60109 · doi:10.1007/BF00972314
[4] Veretennikov, A.Yu., On Polynomial Mixing and the Rate of Convergence for Stochastic Differential and Difference Equations, Theory Probab. Appl., 2000, vol. 44, no. 2, pp. 361–374. · Zbl 0969.60070 · doi:10.1137/S0040585X97977550
[5] Gulinsky, O.V. and Veretennikov, A.Yu., Large Deviations for Discrete-Time Processes with Averaging, Utrecht: VSP, 1993. · Zbl 0838.60028
[6] Kalashnikov, V.V., A Property of \(\gamma\)-reflexivity for Markov Sequences, Soviet Math. Dokl., 1973, vol. 14, pp. 1869–1873. · Zbl 0325.60058
[7] Lindvall, T., On Coupling of Discrete Renewal Processes, Z. Wahrsch. verw. Geb., 1979, vol. 48, pp. 57–70. · Zbl 0388.60088 · doi:10.1007/BF00534882
[8] Nummelin, E. and Tuominen, P., The Rate of Convergence in Orey’s Theorem for Harris Recurrent Markov Chains with Applications to Renewal Theory, Stochast. Proc. Appl., 1983, vol. 15, pp. 95–311. · Zbl 0532.60060 · doi:10.1016/0304-4149(83)90037-6
[9] Tweedie, R.L., Criteria for Rates of Convergence of Markov Chains, with Application to Queueing and Storage Theory, in Probab. Statist. Anal., London Math. Soc., Lecture Note Ser., 79, Cambridge: Cambridge Univ. Press, 1983, pp. 260–276.
[10] Borovkov, A.A., Asymptotic Methods in Queuing Theory, Chichester: Wiley, 1984. · Zbl 0544.60085
[11] Borovkov, A.A., Ergodicity and Stability of Stochastic Processes, New York: Wiley, 1998. · Zbl 0917.60005
[12] Gnedenko, B.V. and Kovalenko, I.N., Introduction to Queueing Theory, Boston: Birkhauser, 1991. · Zbl 0744.60111
[13] Khintchine, A.Ya., Mathematical Methods in the Theory of Queueing, 2nd edition, New York: Hafner, 1969.
[14] Asmussen, S., Applied Probability and Queues, 2nd edition, New York: Springer-Verlag, 2003. · Zbl 1029.60001
[15] Kelly, F.P., Reversibility and Stochastic Networks, Chichester: Wiley, 1979.
[16] Kalashnikov, V.V., Mathematical Methods in Queueing Theory, Dordrecht: Kluwer, 1994. · Zbl 0836.60098
[17] Meyn, S., Control Techniques for Complex Networks, Cambridge: Cambridge Univ. Press, 2008. · Zbl 1139.91002
[18] Takács, L., Introduction to the Theory of Queues, New York: Oxford Univ. Press, 1962. · Zbl 0106.33502
[19] Doob, J.L., Stochastic Processes, New York: Wiley, 1953.
[20] Ibragimov, I.A. and Linnik, Yu.V., Independent and Stationary Sequences of Random Variables, Groningen: Wolters-Noordhoff, 1971. · Zbl 0219.60027
[21] Klokov, S.A., On Lower Bounds for Mixing Rates for a Class of Markov Processes, Theory Probab. Appl., 2007, vol. 51, no. 3, pp. 528–535. · Zbl 1135.60047 · doi:10.1137/S0040585X97982554
[22] Veretennikov, A.Yu., On Lower Bounds for Mixing Coefficients of Markov Diffusions, in From Stochastic Calculus to Mathematical Finance, Kabanov, Yu., Liptser, R., and Stoyanov, J., Eds, Berlin: Springer-Verlag, 2006, pp. 623–633. · Zbl 1103.60070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.