zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$H_\infty $ estimation for discrete-time piecewise homogeneous Markov jump linear systems. (English) Zbl 1180.93100
Summary: This paper concerns the problem of $H_\infty$ estimation for a class of Markov Jump Linear Systems (MJLS) with time-varying Transition Probabilities (TPs) in discrete-time domain. The time-varying character of TPs is considered to be finite piecewise homogeneous and the variations in the finite set are considered to be of two types: arbitrary variation and stochastic variation, respectively. The latter means that the variation is subject to a higher-level transition probability matrix. The mode-dependent and variation-dependent $H_\infty$ filter is designed such that the resulting closed-loop systems are stochastically stable and have a guaranteed $H_\infty$ filtering error performance index. Using the idea in the recent studies of partially unknown TPs for the traditional MJLS with homogeneous TPs, a generalized framework covering the two kinds of variations is proposed. A numerical example is presented to illustrate the effectiveness and the potential of the developed theoretical results.

93E10Estimation and detection in stochastic control
93C55Discrete-time control systems
60J75Jump processes
Full Text: DOI
[1] Internet traffic report (2008). http://www.internettrafficreport.com
[2] Boukas, E. K.: Stochastic switching systems: analysis and design, (2005) · Zbl 1108.93074
[3] Boukas, E. K.; Liu, Z. K.: Robust H$\infty $control of discrete-time Markovian jump linear systems with mode-dependent time-delays, IEEE transactions on automatic control 46, No. 12, 1918-1924 (2001) · Zbl 1005.93050 · doi:10.1109/9.975476
[4] Costa, O. L. V.; Fragoso, M. D.; Marques, R. P.: Discrete-time Markovian jump linear systems, (2005) · Zbl 1081.93001
[5] De Farias, D. P.; Geromel, J. C.; Do Val, J. B. R.; Costa, O. L. V.: Output feedback control of Markov jump linear systems in continuous-time, IEEE transactions on automatic control 45, No. 5, 944-949 (2000) · Zbl 0972.93074 · doi:10.1109/9.855557
[6] Diebold, F. X.; Lee, J. H.; Weinbach, G. C.: Regime switching with time-varying transition probabilities, Advanced texts in econometrics, 283-302 (1994)
[7] Iosifescu, M.: Finite Markov processes and their applications, (1980) · Zbl 0436.60001
[8] Kemeny, J. G.; Snell, J. L.: Finite Markov chains, (1960) · Zbl 0089.13704
[9] Krtolica, R.; Ozguner, U.; Chan, H.; Goktas, H.; Winkelman, J.; Liubakka, M.: Stability of linear feedback systems with random communication delays, International journal control 59, No. 4, 925-953 (1994) · Zbl 0812.93073 · doi:10.1080/00207179408923111
[10] Liu, H.; Sun, F. C.; He, K. Z.; Sun, Z. Q.: Design of reduced-order H$\infty $filter for Markovian jumping systems with time delay, IEEE transactions on circuits and systems (II) 51, No. 11, 607-612 (2004)
[11] Narendra, K. S.; Tripathi, S. S.: Identification and optimization of aircraft dynamics, Journal of aircraft 10, No. 4, 193-199 (1973)
[12] Salkin, M. S.; Just, R. E.; Cleveland, O. A.: Estimation of nonstationary transition probabilities for agricultural firm size projection, The annals of regional science 10, No. 1, 71-82 (1976)
[13] Seiler, P.; Sengupta, R.: An H$\infty $approach to networked control, IEEE transactions on automatic control 50, No. 3, 356-364 (2005)
[14] Wang, Z.; Lam, J.; Liu, X. H.: Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances, IEEE transactions on circuits and systems (II) 51, 262-268 (2004)
[15] Wang, Z.; Lam, J.; Liu, X. H.: Robust filtering for discrete-time Markovian jump delay systems, IEEE signal processing letters 11, No. 8, 659-662 (2004)
[16] Xiong, J. L.; Lam, J.; Gao, H. J.; Daniel, W. C.: On robust stabilization of Markovian jump systems with uncertain switching probabilities, Automatica 41, No. 5, 897-903 (2005) · Zbl 1093.93026 · doi:10.1016/j.automatica.2004.12.001
[17] Xu, S.; Chen, T.; Lam, J.: Robust H$\infty $filtering for uncertain Markovian jump systems with mode-dependent time-delays, IEEE transactions on automatic control 48, No. 5, 900-907 (2003)
[18] Zhang, L. Q.; Shi, Y.; Chen, T. W.; Huang, B.: A new method for stabilization of networked control systems with random delays, IEEE transacttions on automatic control 50, No. 8, 1177-1181 (2005)
[19] Zhang, L. X.; Boukas, E. K.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probability, Automatica 45, No. 2, 463-468 (2009) · Zbl 1158.93414 · doi:10.1016/j.automatica.2008.08.010
[20] Zhang, L. X.; Boukas, E. K.; Lam, J.: Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities, IEEE transactions on automatic control 53, No. 10, 2458-2464 (2008)
[21] Zhang, L. X.; Shi, P.; Wang, C. H.; Gao, H. J.: Robust H$\infty $filtering for switched linear discrete-time systems with polytopic uncertainties, International journal of adaptive control & signal processing 20, No. 6, 291-304 (2006) · Zbl 1127.93324 · doi:10.1002/acs.901