Douai, Jean-Claude On the non-abelian 2-cohomology of regular models of Henselian local rings. (Sur la 2-cohomologie non abelienne des modèles réguliers des anneaux locaux henséliens.) (French. English summary) Zbl 1181.14016 J. Théor. Nombres Bordx. 21, No. 1, 119-129 (2009). Let \((A,m,k)\) be an excellent Henselian, local domain with \(k\) either finite, or separable closed. Let \(X\rightarrow \mathrm{Spec } A\) be a proper morphism with special fiber \(X_0\rightarrow \mathrm{Spec } k\) of dimension at most one. If \(X\) is regular and \(L\) is a \(X_{et}\)-lien that is locally representable by a simply connected semi-simple group then all classes of \(H^2(X_{et},L)\) are neutral. This completes the results of J.-L. Colliot-Thélène, M. Ojanguren, R. Parimala [Proceedings of the international colloquium on algebra, arithmetic and geometry, Mumbai, India, January 4–12, 2000. Part I and II. New Delhi: Narosa Publishing House, published for the Tata Institute of Fundamental Research, Bombay. Stud. Math., Tata Inst. Fundam. Res. 16, 185–217 (2002; Zbl 1055.14019)]. If \(\dim \;A=2\), \(k\) is algebraically closed of equicharacteristic \(0\) and \(X\) is regular model of \(A\) then all classes of \(H^2(K,L)\), \(K=\mathrm{Frac }A\) are neutral. Reviewer: Dorin-Mihail Popescu (Bucureşti) Cited in 2 Documents MSC: 14E15 Global theory and resolution of singularities (algebro-geometric aspects) 14F22 Brauer groups of schemes 14F99 (Co)homology theory in algebraic geometry 13F40 Excellent rings 13J15 Henselian rings Keywords:Regular model; excellent Henselian local ring; simply connected semi-simple group Citations:Zbl 1055.14019 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] J.L. Colliot-Thélène, M. Ojanguren and R. Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes. In Algebra, Arithmetic and Geometry, I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16 (2002), 185-217. MR 1940669. · Zbl 1055.14019 [2] J.L. Colliot-Thélène, P. Gille and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields. Duke Math. J. 121 (2004), 285-341. · Zbl 1129.11014 [3] J.C. Douai, 2-cohomologie galoisienne des groupes semi-simples. Thèse d’Etat, Université de Lille 1, Lille, France, 1976. · Zbl 0328.20036 [4] J.C. Douai, Sur la 2-cohomologie galoisienne de la composante résiduellement neutre des groupes réductifs connexes définis sur les corps locaux. C.R. Acad. Sci. Paris, Série I 342 (2006), 813-818. · Zbl 1101.11014 [5] J. Giraud, Cohomologie non abélienne. Grundlheren Math. Wiss. vol. 179, Springer-Verlag, 1971. · Zbl 0226.14011 [6] J.S. Milne, Etale cohomology. Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, 1980. · Zbl 0433.14012 [7] S.G.A.D., Séminaire de géométrie algébrique 1963-1964. Lecture Notes in Math., 151-153, Springer, 1970. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.