×

Surfaces with \(K^{2}=8, p_{g}=4\) and canonical involution. (English) Zbl 1181.14040

This paper is devoted to the complete classification of regular surfaces with \(K^2=8\), \(p_g=4\) whose canonical map is composed with an involution. It is shown that the quotient surface is either rational or of general type and in this last case the canonical map has degree 4.
Six unirational families of such surfaces are obtained of which two form irreducible components of the moduli space of surfaces with \(K^2=8\), \(p_g=4\). It is also shown that these surfaces hit three different topological types.

MSC:

14J29 Surfaces of general type
14J10 Families, moduli, classification: algebraic theory
14J50 Automorphisms of surfaces and higher-dimensional varieties
PDF BibTeX XML Cite
Full Text: arXiv Euclid

References:

[1] I.C. Bauer: Surfaces with \(K^2=7\) and \(p_g=4\), Mem. Amer. Math. Soc. 152 , 2001. · Zbl 0985.14016
[2] I.C. Bauer, F. Catanese and R. Pignatelli: The moduli space of surfaces with \(K^2=6\) and \(p_g=4\) , Math. Ann. 336 (2006), 421–438. · Zbl 1106.14022
[3] F. Catanese: Singular bidouble covers and the construction of interesting algebraic surfaces ; in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math. 241 , Amer. Math. Soc., Providence, RI, 1999, 97–120. · Zbl 0964.14012
[4] F. Catanese and R. Pignatelli: Fibrations of low genus , I, Ann. Sci. École Norm. Sup. (4) 39 (2006), 1011–1049. · Zbl 1125.14023
[5] C. Ciliberto: Canonical surfaces with \(p_g=p_a=4\) and \(K^2=5,\ldots,10\) , Duke Math. J. 48 (1981), 121–157. · Zbl 0468.14011
[6] C. Ciliberto, P. Francia and M. Mendes Lopes: Remarks on the bicanonical map for surfaces of general type , Math. Z. 224 (1997), 137–166. · Zbl 0871.14011
[7] F. Enriques: Le Superficie Algebriche, Nicola Zanichelli, Bologna, 1949.
[8] F.J. Gallego and B.P. Purnaprajna: Classification of quadruple Galois canonical covers . I, preprint, http://arxiv.org/abs/math/0302045. · Zbl 1154.14032
[9] F.J. Gallego and B.P. Purnaprajna: Classification of quadruple Galois canonical covers . II, J. Algebra 312 (2007), 798–828. · Zbl 1121.14030
[10] E. Horikawa: Algebraic surfaces of general type with small \(c^2_1\) . I, Ann. of Math. (2) 104 (1976), 357–387. JSTOR: · Zbl 0339.14024
[11] E. Horikawa: On algebraic surfaces with pencils of curves of genus \(2\) ; in Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 79–90. · Zbl 0349.14021
[12] E. Horikawa: Algebraic surfaces of general type with small \(c^2_1\) . III, Invent. Math. 47 (1978), 209–248. · Zbl 0409.14005
[13] K. Konno: On the irregularity of special non-canonical surfaces , Publ. Res. Inst. Math. Sci. 30 (1994), 671–688. · Zbl 0841.14032
[14] M. Mendes Lopes and R. Pardini: Triple canonical surfaces of minimal degree , Internat. J. Math. 11 (2000), 553–578. · Zbl 1077.14542
[15] M. Mendes Lopes and R. Pardini: The bicanonical map of surfaces with \(p_g=0\) and \(K^2\geq7\) . II, Bull. London Math. Soc. 35 (2003), 337–343. · Zbl 1024.14020
[16] P.A. Oliverio: On even surfaces of general type with \(K^2=8\), \(p_g=4\), \(q=0\) , Rend. Sem. Mat. Univ. Padova 113 (2005), 1–14. · Zbl 1121.14034
[17] M. Reid: Surfaces of small degree , Math. Ann. 275 (1986), 71–80. · Zbl 0579.14017
[18] P. Supino: On moduli of regular surfaces with \(K^2=8\) and \(p_g=4\) , Port. Math. (N.S.) 60 (2003), 353–358. · Zbl 1040.14021
[19] G. Xiao: Surfaces Fibrées en Courbes de Genre Deux, Lecture Notes in Math. 1137 , Springer, Berlin, 1985. · Zbl 0579.14028
[20] G. Xiao: \(\pi_1\) of elliptic and hyperelliptic surfaces , Internat. J. Math. 2 (1991), 599–615. · Zbl 0762.14013
[21] F. Zucconi: Numerical inequalities for surfaces with canonical map composed with a pencil , Indag. Math. (N.S.) 9 (1998), 459–476. · Zbl 0957.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.