zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of fuzzy differential equations under generalized differentiability. (English) Zbl 1181.34005
Summary: We interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized Characterization Theorem, we investigate the problem of finding a numerical approximation of solutions. Then we show that any suitable numerical method for ODEs can be applied to solve numerically fuzzy differential equations under generalized differentiability. The generalized Euler approximation method is implemented and its error analysis, which guarantees pointwise convergence, is given. The method’s applicability is illustrated by solving a linear first-order fuzzy differential equation.

MSC:
34A07Fuzzy differential equations
65L99Numerical methods for ODE
WorldCat.org
Full Text: DOI
References:
[1] Buckley, J. J.; Feuring, T.: Fuzzy differential equations. Fuzzy sets and systems 110, 43-54 (2000) · Zbl 0947.34049
[2] Chalco-Cano, Y.; Román-Flores, H.: Comparison between some approaches to solve fuzzy differential equations. Fuzzy sets and systems 160, 1517-1527 (2009) · Zbl 1198.34005
[3] Nieto, J. J.; Rodríguez-López, R.: Euler polygonal method for metric dynamical systems. Information sciences 177, 587-600 (2007) · Zbl 1142.65068
[4] Prakash, P.; Priya, G. Sudha; Kim, J. H.: Third-order three-point fuzzy boundary value problems. Nonlinear analysis: hybrid systems (2009) · Zbl 1196.34006
[5] Kaleva, O.: Fuzzy differential equations. Fuzzy sets and systems 24, 301-317 (1987) · Zbl 0646.34019
[6] Nieto, J. J.; Rodríguez-López, R.; Franco, D.: Linear first-order fuzzy differential equation. International journal of uncertainty fuzziness knowledge-based systems 14, 687-709 (2006) · Zbl 1116.34005
[7] Song, S.; Wu, C.: Existence and uniqueness of solutions to the Cauchy problem of fuzzy differential equations. Fuzzy sets and systems 110, 55-67 (2000) · Zbl 0946.34054
[8] Hüllermeier, E.: An approach to modelling and simulation of uncertain systems. International journal of uncertainty fuzziness knowledge-based system 5, 117-137 (1997)
[9] Bede, B.; Gal, S. G.: Almost periodic fuzzy-number-valued functions. Fuzzy sets and systems 147, 385-403 (2004) · Zbl 1053.42015
[10] Bede, B.; Gal, S. G.: Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy sets and systems 151, 581-599 (2005) · Zbl 1061.26024
[11] Bede, B.; Rudas, I. J.; Bencsik, A. L.: First order linear fuzzy differential equations under generalized differentiability. Information sciences 177, 1648-1662 (2007) · Zbl 1119.34003
[12] Chalco-Cano, Y.; Román-Flores, H.: On new solutions of fuzzy differential equations. Chaos, solitons & fractals 38, 112-119 (2008) · Zbl 1142.34309
[13] Hüllermeier, E.: Numerical methods for fuzzy initial value problems. International journal of uncertainty fuzziness knowledge-based systems 7, 439-461 (1999) · Zbl 1113.65311
[14] Abbasbandy, S.; Allahviranloo, T.: Numerical solutions of fuzzy differential equations by Taylor method. Journal of computational methods in applied mathematics 2, 113-124 (2002)
[15] Abbasbandy, S.; Allahviranloo, T.; Lopez-Pouso, O.; Nieto, J. J.: Numerical methods for fuzzy differential inclusions. Journal of computer and mathematics with applications 48, 1633-1641 (2004) · Zbl 1074.65072
[16] Allahviranloo, T.; Ahmadi, N.; Ahmadi, E.: Numerical solution of fuzzy differential equations by predictor--corrector method. Information sciences 177, 1633-1647 (2007) · Zbl 1183.65090
[17] Friedman, M.; Ma, M.; Kandel, A.: Numerical solution of fuzzy differential and integral equations. Fuzzy sets and systems 106, 35-48 (1999) · Zbl 0931.65076
[18] Khastan, A.; Ivaz, K.: Numerical solution of fuzzy differential equations by Nyström method. Chaos, solitons & fractals 41, 859-868 (2009) · Zbl 1198.65113
[19] Bede, B.: Note on ”numerical solutions of fuzzy differential equations by predictor corrector method”. Information sciences 178, 1917-1922 (2008) · Zbl 1183.65092
[20] Diamond, P.; Kloeden, P.: Metric spaces of fuzzy sets. (1994) · Zbl 0873.54019
[21] Puri, M. L.; Ralescu, D. A.: Differentials of fuzzy functions. Journal of mathematical analysis and applications 91, 552-558 (1983) · Zbl 0528.54009
[22] Kaleva, O.: A note on fuzzy differential equations. Nonlinear analysis 64, 895-900 (2006) · Zbl 1100.34500