zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Second-order nonlinear singular Sturm-Liouville problems with integral boundary conditions. (English) Zbl 1181.34035
Summary: This paper is concerned with the second-order singular Sturm-Liouville integral boundary value problems $$\cases -u''(t)=\lambda h(t)f(t,u(t)),\quad 0<t<1,\\ \alpha u(0)=\beta u'(0)=\int^1_0 a(s)u(s)\,ds\\ \gamma u(0)=\delta u'(1)=\int^1_0 b(s)u(s)\,ds,\endcases$$ where $\lambda>0$, $h$ is allowed to be singular at $t=0,1$ and $f(t,x)$ may be singular at $x=0$. By using the fixed point theory in cones, an explicit interval for $\lambda$ is derived such that for any $\lambda$ in this interval, the existence of at least one positive solution to the boundary value problem is guaranteed. Our results extend and improve many known results including singular and non-singular cases.

34B24Sturm-Liouville theory
34L15Eigenvalues, estimation of eigenvalues, upper and lower bounds for OD operators
Full Text: DOI
[1] Yao, Q.: Positive solution of a class of singular two-point boundary value problems, Acta. math. Appl. sinica 21, 522-526 (2001) · Zbl 0998.34017
[2] Ma, R.: Multiplicity of positive solutions for second-order three-point boundary value problems, Comput. math. Appl. 40, 193-204 (2000) · Zbl 0958.34019 · doi:10.1016/S0898-1221(00)00153-X
[3] Ma, R.: Positive solutions of a nonlinear three-point boundary value problems, Electron. J. Differ. equat. 34, 1-8 (1999) · Zbl 0926.34009 · emis:journals/EJDE/Volumes/1999/34/abstr.html
[4] He, X.; Ge, W.: Triple solutions for second-order three-point boundary value problems, J. math. Anal. appl. 268, 256-265 (2002) · Zbl 1043.34015 · doi:10.1006/jmaa.2001.7824
[5] Bai, Z.; Li, W.; Ge, W.: Existence and multiplicity of solutions for four-point boundary value problems at resonance, Nonlinear anal. 60, 1151-1162 (2005) · Zbl 1070.34026 · doi:10.1016/j.na.2004.10.013
[6] Bai, Z.; Du, Z.: Positive solutions for some second-order four-point boundary value problems, J. math. Anal. appl. 330, 34-50 (2007) · Zbl 1115.34016 · doi:10.1016/j.jmaa.2006.07.044
[7] Xu, X.: Positive solutions for singular m-point boundary value problems with positive parameter, J. math. Anal. appl. 291, 352-367 (2004) · Zbl 1047.34016 · doi:10.1016/j.jmaa.2003.11.009
[8] Liu, B.: Positive solutions of second-order three-point boundary value problems with change of sign, Comput. appl. Math. 47, 1351-1361 (2004) · Zbl 1060.34015 · doi:10.1016/S0898-1221(04)90128-9
[9] Zhang, G.; Sun, J.: Multiple positive solutions of singular second-order m-point boundary value problems, J. math. Anal. appl. 317, 442-447 (2006) · Zbl 1094.34017 · doi:10.1016/j.jmaa.2005.08.020
[10] Li, Y.: Positive solutions of second-order boundary value problems with sign-changing nonlinear terms, J. math. Anal. appl. 282, 232-240 (2003) · Zbl 1030.34023 · doi:10.1016/S0022-247X(03)00141-0
[11] Liu, B.: Positive solutions of a nonlinear four-point boundary value problems, Appl. math. Comput. 155, 179-203 (2004) · Zbl 1068.34011 · doi:10.1016/S0096-3003(03)00770-7
[12] Sun, Y.: Positive solutions of nonlinear second-order m-point boundary value problem, Nonlinear anal. 61, 1283-1294 (2005) · Zbl 1081.34024 · doi:10.1016/j.na.2005.01.105
[13] Liu, L.; Zhang, X.; Wu, Y.: Positive solutions of fourth-order nonlinear singular Sturm -- Liouville eigenvalue problems, J. math. Anal. appl. 326, 1212-1224 (2007) · Zbl 1113.34022 · doi:10.1016/j.jmaa.2006.03.029
[14] Khan, R. A.: The generalized method of quasi-linearization and nonlinear boundary value problems with integral boundary conditions, Electron. J. Qual. theory differ. Equat. 19, 1-15 (2003) · Zbl 1055.34033 · emis:journals/EJQTDE/2003/200319.html
[15] Gallardo, J. M.: Second order differential operators with integral boundary conditions and generation of semigroups, Rocky mountain J. Math. 30, 1265-1292 (2000) · Zbl 0984.34014 · doi:10.1216/rmjm/1021477351 · http://math.la.asu.edu/~rmmc/rmj/VOL30-4/CONT30-4/CONT30-4.html
[16] Karakostas, G. L.; Tsamatos, P. Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differ. equat. 30, 1-17 (2002) · Zbl 0998.45004 · emis:journals/EJDE/Volumes/2002/30/abstr.html
[17] Lomtatidze, A.; Malaguti, L.: On a nonlocal boundary-value problems for second order nonlinear singular differential equations, Georgian math. J. 7, 133-154 (2000) · Zbl 0967.34011
[18] Corduneanu, C.: Integral equations and applications, (1991) · Zbl 0714.45002
[19] Agarwal, R. P.; O’regan, D.: Infinite interval problems for differential, difference and integral equations, (2001)
[20] Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cone, (1988) · Zbl 0661.47045
[21] Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[22] Liu, L.; Kang, P.; Wu, Y.; Wiwatanapataphee, B.: Positive solutions of singular boundary value problems for systems of nonlinear fourth order differential equations, Nonlinear anal. 68, 485-498 (2008) · Zbl 1134.34015 · doi:10.1016/j.na.2006.11.014
[23] Liu, L.; Liu, B.; Wu, Y.: Nontrivial solutions of m-point boundary value problems for singular second-order differential equations with a sign-changing nonlinear term, J. comput. Appl. math. 224, 373-382 (2009) · Zbl 1163.34011 · doi:10.1016/j.cam.2008.05.007
[24] Liu, W.; Liu, L.; Wu, Y.: Positive solutions of a singular boundary value problem for systems of second-order differential equations, Appl. math. Comput. 208, 511-519 (2009) · Zbl 1190.34020 · doi:10.1016/j.amc.2008.12.019