×

Persistence and stability for a generalized Leslie-Gower model with stage structure and dispersal. (English) Zbl 1181.34088

Summary: A generalized version of the Leslie-Gower predator-prey model that incorporates the prey structure and predator dispersal in two-patch environments is introduced.
\[ \begin{aligned} & \dot x_1(t)=\alpha x_2(t)-r_1x_1(t)-\alpha e^{-r_1\tau}x_2(t-\tau),\\ & \dot x_2(t)=\alpha e^{-r_1\tau}x_2(t-\tau)-r_2x_2(t)-r_3x^2_2(t)-\frac{a_1y_1(t)x_2(t)}{x_2(t)+k_1}\,,\\ & \dot y_1(t)=\left(\beta_1 -\frac{a_2y_1(t)}{x_2(t)+k_2}\right) y_1(t)+D_1(y_2(t)-y_1(t)),\\ & \dot y_2(t)=(\beta_2-r_4y_2(t))y_2(t)+D_2(y_1(t)-y_2(t)),\end{aligned}\tag{*} \]
where \(x_1(t)\) and \(x_2(t)\) represents the densities of immature and mature individual prey in patch 1 at time \(t\), \(y_i(t)\) represent the densities of immature and mature individual prey in patch 1 at time \(t\), \(y_i(t)\) denote the density of predator species in patch \(i\), \(i=1,2\) at time \(t\), all parameters of (*) are positive constants
The focus is on the study of the boundedness of solution, permanence, and extinction of the model. Sufficient conditions for global asymptotic stability of the positive equilibrium are derived by constructing a Lyapunov functional. Numerical simulations are also presented to illustrate our main results.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
35K25 Higher-order parabolic equations
34K20 Stability theory of functional-differential equations

References:

[1] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998. · Zbl 0995.91005
[2] J. D. Murray, Mathematical Biology, vol. 19 of Biomathematics, Springer, Heidelberg, Germany, 2nd edition, 1993. · Zbl 1003.92503
[3] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, vol. 57 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980. · Zbl 0539.03004
[4] Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, River Edge, NJ, USA, 1996. · Zbl 0951.32009
[5] F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, vol. 40 of Texts in Applied Mathematics, Springer, New York, NY, USA, 2001. · Zbl 1108.70300 · doi:10.2307/2695798
[6] P. H. Leslie, “Some further notes on the use of matrices in population mathematics,” Biometrika, vol. 35, pp. 213-245, 1948. · Zbl 0034.23303 · doi:10.1093/biomet/35.3-4.213
[7] M. A. Aziz-Alaoui and M. Daher Okiye, “Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes,” Applied Mathematics Letters, vol. 16, no. 7, pp. 1069-1075, 2003. · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[8] A. F. Nindjin, M. A. Aziz-Alaoui, and M. Cadivel, “Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay,” Nonlinear Analysis: Real World Applications, vol. 7, no. 5, pp. 1104-1118, 2006. · Zbl 1104.92065 · doi:10.1016/j.nonrwa.2005.10.003
[9] A. Korobeinikov, “A Lyapunov function for Leslie-Gower predator-prey models,” Applied Mathematics Letters, vol. 14, no. 6, pp. 697-699, 2001. · Zbl 0999.92036 · doi:10.1016/S0893-9659(01)80029-X
[10] H. Guo and X. Song, “An impulsive predator-prey system with modified Leslie-Gower and Holling type II schemes,” Chaos, Solitons & Fractals, vol. 36, no. 5, pp. 1320-1331, 2008. · Zbl 1148.34034 · doi:10.1016/j.chaos.2006.08.010
[11] X. Song and Y. Li, “Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect,” Nonlinear Analysis: Real World Applications, vol. 9, no. 1, pp. 64-79, 2008. · Zbl 1142.34031 · doi:10.1016/j.nonrwa.2006.09.004
[12] A. Hastings, “Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates,” Journal of Mathematical Biology, vol. 16, no. 1, pp. 49-55, 1982. · Zbl 0496.92010 · doi:10.1007/BF00275160
[13] Y. Takeuchi, “Diffusion-mediated persistence in two-species competition Lotka-Volterra model,” Mathematical Biosciences, vol. 95, no. 1, pp. 65-83, 1989. · Zbl 0671.92022 · doi:10.1016/0025-5564(89)90052-7
[14] S. A. Levin, “Dispersion and population interactions,” The American Naturalist, vol. 108, pp. 207-228, 1974.
[15] S. A. Levin and L. A. Segel, “Hypothesis to explain the origion of planktonic patchness,” Nature, vol. 259, p. 659, 1976.
[16] R. Xu, M. A. J. Chaplain, and F. A. Davidson, “Global stability of a stage-structured predator-prey model with prey dispersal,” Applied Mathematics and Computation, vol. 171, no. 1, pp. 293-314, 2005. · Zbl 1080.92069 · doi:10.1016/j.amc.2005.01.055
[17] W. G. Aiello and H. I. Freedman, “A time-delay model of single-species growth with stage structure,” Mathematical Biosciences, vol. 101, no. 2, pp. 139-153, 1990. · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[18] R. Xu, M. A. J. Chaplain, and F. A. Davidson, “Persistence and global stability of a ratio-dependent predator-prey model with stage structure,” Applied Mathematics and Computation, vol. 158, no. 3, pp. 729-744, 2004. · Zbl 1058.92053 · doi:10.1016/j.amc.2003.10.012
[19] R. Xu, M. A. J. Chaplain, and F. A. Davidson, “Persistence and periodicity of a delayed ratio-dependent predator-prey model with stage structure and prey dispersal,” Applied Mathematics and Computation, vol. 159, no. 3, pp. 823-846, 2004. · Zbl 1056.92062 · doi:10.1016/j.amc.2003.11.006
[20] R. Xu, M. A. J. Chaplain, and F. A. Davidson, “Global stability of a Lotka-Volterra type predator-prey model with stage structure and time delay,” Applied Mathematics and Computation, vol. 159, no. 3, pp. 863-880, 2004. · Zbl 1056.92063 · doi:10.1016/j.amc.2003.11.008
[21] W. Wang, G. Mulone, F. Salemi, and V. Salone, “Permanence and stability of a stage-structured predator-prey model,” Journal of Mathematical Analysis and Applications, vol. 262, no. 2, pp. 499-528, 2001. · Zbl 0997.34069 · doi:10.1006/jmaa.2001.7543
[22] H.-F. Huo, X. H. Wang, and C. Castillo-Chavez, “Dynamics of a stage-structured Leslie-Gower predator-prey model,” submitted. · Zbl 1235.34194
[23] X. Song, L. Cai, and A. U. Neumann, “Ratio-dependent predator-prey system with stage structure for prey,” Discrete and Continuous Dynamical Systems. Series B, vol. 4, no. 3, pp. 747-758, 2004. · Zbl 1114.92056 · doi:10.3934/dcdsb.2004.4.747
[24] X. Song and L. Chen, “Optimal harvesting and stability for a two-species competitive system with stage structure,” Mathematical Biosciences, vol. 170, no. 2, pp. 173-186, 2001. · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
[25] R. Xu and L. Chen, “Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment,” Computers & Mathematics with Applications, vol. 40, no. 4-5, pp. 577-588, 2000. · Zbl 0949.92028 · doi:10.1016/S0898-1221(00)00181-4
[26] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993. · Zbl 0777.34002
[27] Y. Song, M. Han, and J. Wei, “Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays,” Physica D, vol. 200, no. 3-4, pp. 185-204, 2005. · Zbl 1062.34079 · doi:10.1016/j.physd.2004.10.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.