zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The global attractor of the viscous Fornberg-Whitham equation. (English) Zbl 1181.35027
Summary: This paper aims to present a proof of the existence of the attractor for the one-dimensional viscous Fornberg-Whitham equation. The global existence of a solution to the viscous Fornberg-Whitham equation in $L^{2}$ under periodic boundary conditions is studied. By using the time estimate of the Fornberg-Whitham equation, we get the compact and bounded absorbing set and the existence of the global attractor for the viscous Fornberg-Whitham equation.

MSC:
35B41Attractors (PDE)
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] Degasperis, A.; Procesi, M.: Asymptotic integrability. Symmetry and perturbation theory, 23-37 (1999) · Zbl 0963.35167
[2] Camassa, R.; Holm, D. D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Johnson, R. S.: Camassa--Holm, Korteweg--de Vries and related models for water waves. J. fluid mech. 455, 63-82 (2002) · Zbl 1037.76006
[4] Constantin, A.; Lannes, D.: The hydrodynamical relevance of the Camassa--Holm and Degasperis--Procesi equations. Arch. ration. Mech. anal. 192, 165-186 (2009) · Zbl 1169.76010
[5] Constantin, A.; Strauss, W.: Stability of a class of solitary waves in compressible elastic rods. Phys. lett. A. 270, 140-148 (2000) · Zbl 1115.74339
[6] Dai, H. H.: Model equations for nonlinear dispersive waves in a compressible mooney--rivlinrod. Acta. mech. 127, 193-207 (1998) · Zbl 0910.73036
[7] Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solution. Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521
[8] Constantin, A.: Global existence of solution and breaking waves for a shallow water equation: A geometric approach. Ann. inst. Fourier (Grenoble) 50, 321-326 (2000) · Zbl 0944.35062
[9] Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation. Ann. sc. Norm. super. Pisa 26, 303-328 (1998) · Zbl 0918.35005
[10] Constantin, A.; Mckean, H. P.: A shallow water equation on the circle. Comm. pure appl. Math. 52, 949-982 (1999) · Zbl 0940.35177
[11] Constantin, A.: On the inverse spectral problem for the Camassa--Holm equation. J. funct. Anal. 155, 352-363 (1998) · Zbl 0907.35009
[12] Constantin, A.: On the scattering problem for the Camassa--Holm equation. Proc. roy. Soc. London A 457, 953-970 (2001) · Zbl 0999.35065
[13] Constantin, A.; Gerdjikov, V.; Ivanov, R.: Inverse scattering transform for the Camassa--Holm equation. Inverse problems 22, 2197-2207 (2006) · Zbl 1105.37044
[14] De Monvel, A. Boutet; Shepelsky, D.: Riemann--Hilbert approach for the Camassa--Holm equation on the line. C. R. Math. acad. Sci. Paris 343, 627-632 (2006) · Zbl 1110.35056
[15] Lenells, J.: Traveling wave solutions of the Camassa--Holm equation. J. differential equations 217, 393-430 (2005) · Zbl 1082.35127
[16] Constantin, A.; Strauss, W.: Stability of peakons. Comm. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149
[17] Constantin, A.; Strauss, W.: Stability of the Camassa--Holm solitons. J. nonlinear sci. 12, 415-422 (2002) · Zbl 1022.35053
[18] Beals, R.; Sattinger, D.; Szmigiel-Ski, J.: Multi-peakons and a theorem of Stieltjes. Inverse problems 15, L1-L4 (1999) · Zbl 0923.35154
[19] Johnson, R. S.: On solutions of the Camassa--Holm equation. Proc. roy. Soc. London A 459, 1687-1708 (2003) · Zbl 1039.76006
[20] Bressan, A.; Constantin, A.: Global conservative solutions of the Camassa--Holm equation. Arch. ration. Mech. anal. 183, 215-239 (2007) · Zbl 1105.76013
[21] Bressan, A.; Constantin, A.: Global dissipative solutions of the Camassa--Holm equation. Anal. appl. 5, 1-27 (2007) · Zbl 1139.35378
[22] Zhou, Jiangbo; Tian, Lixin: Blow-up of solution of an initial boundary value problem for a generalized Camassa--Holm equation. Phys. lett A. 372, No. 20, 3659-3666 (2008) · Zbl 1220.35019
[23] Ding, Danping; Tian, Lixin: The attractor in dissipative Camassa--Holm equation. Acta math. Appl. sin. 27, No. 3, 536-545 (2004) · Zbl 1080.35007
[24] Ding, Danping; Tian, Lixin: The study on solution of dissipative Camassa--Holm equation with weak dissipation. Commun. pure appl. Anal. 5, No. 3, 483-493 (2006) · Zbl 1140.35306
[25] Qian, Suping: Nonclassical symmetry reductions for coupled KdV equation. Int. J. Nonlinear sci. 2, No. 2, 97-103 (2006)
[26] Ding, Danping; Tian, Lixin: The study of solution of dissipative Camassa--Holm equation on total space. Int. J. Nonlinear sci. 1, No. 1, 37-42 (2006)
[27] Tian, Lixin; Shen, Chunyu: Optimal control of the viscous Camassa--Holm equation. Nonlinear anal. RWA 10, No. 1, 519-530 (2009) · Zbl 1154.49300
[28] Tian, Lixin; Sun, Lu: Singular solitons of generalized Camassa--Holm models. Chaos soliton fractals 32, No. 2, 780-799 (2007) · Zbl 1139.35090
[29] Tian, Lixin; Song, Xieyin: New peaked solitary wave solution of the generalized Camassa--Holm equation. Chaos solitons fractals 19, No. 3, 621-637 (2004) · Zbl 1068.35123
[30] Tian, Lixin; Yin, Jiuli: New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa--Holm equations. Chaos solitons fractals 20, 289-299 (2004) · Zbl 1046.35101
[31] Yin, Jiuli; Tian, Lixin: Compacton solutions and floating compacton solutions of one type of nonlinear equations. Acta physi. Sinica 53, No. 9, 821-822 (2004) · Zbl 1046.35101
[32] Degasperis, A.; Holm, D. D.; Hone, A. N. W.: A new integral equation with peakon solutions. Theoret. math. Phys. 133, 1463-1474 (2002)
[33] Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: Camassa--Holm, Korteweg-de veris and other asymptotically equivalent equations for shallow water waves. Fluid dynam. Res. 33, 73-79 (2003) · Zbl 1032.76518
[34] Lenells, J.: Traveling wave solutions of the Degasperis--Procesi equation. J. math. Anal. appl. 306, 72-82 (2005) · Zbl 1068.35163
[35] Tian, Lixin; Fang, Guochang; Gui, Guilong: Well-posedness problem and blow-up for an integrable shallow water equation with strong dispersive term. Int. J. Nonlinear sci. 1, No. 1, 3-12 (2006)
[36] Coclite, G. M.; Karlsen, K. H.; Risebro, N. H.: Numerical schemes for computing discontinuous solutions of the Degasperis--Procesi equation. Pure math. 6, 1-23 (2006) · Zbl 1246.76114
[37] Lundmark, H.: Formation and dynamics of shock waves in the Degasperis--Procesi equation. J. nonlinear sci. 17, No. 3, 169-198 (2007) · Zbl 1185.35194
[38] Tian, Lixin; Li, Xiuming: On the well-posedness problem for the generalized Degasperis--Procesi equation. Int. J. Nonlinear sci. 2, 67-76 (2006)
[39] Yu, Liqin; Tian, Lixin; Wang, Xuedi: The bifucation and peakon for Degasperis--Procesi equation. Chaos soliton fractals 30, No. 4, 956-966 (2006) · Zbl 1142.35589
[40] Tian, Lixin; Shen, Chunyu: Optimal control of the viscous Degasperis--Procesi equation. J. math. Phys. 48, No. 11, 13-16 (2007) · Zbl 1153.81442
[41] Tian, Lixin; Li, Xiuming: Well-posedness for a new completely integrable shallow waterwave equation. Int. J. Nonlinear sci. 4, No. 2, 83-91 (2007)
[42] Tian, Lixin; Ni, Meijie: Blow-up phenomena for the periodic Degasperis--Procesi equation with strong dispersive term. Int. J. Nonlinear sci. 2, No. 3, 177-182 (2006)
[43] Tian, Lixin; Ni, Meijie: Blow-up phenomena for the Degasperis--Procesi equation with strong dispersive term. Int. J. Nonlinear sci. 3, No. 3, 187-194 (2007)
[44] Zhou, Jiangbo; Mai, Anchan: A mixed initial boundary value problem for the Degasperis--Procesi equation on a bounded interval. Int. J. Nonlinear sci. 5, No. 3, 255-260 (2008) · Zbl 1227.35137
[45] Zhou, Jiangbo: Global existence of solution to an initial boundary value problem for the Degasperis--Procesi equation. Int. J. Nonlinear sci. 4, No. 2, 141-146 (2007)
[46] Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta math. 181, 229-243 (1998) · Zbl 0923.76025
[47] Constantin, A.: The trajectories of particles in Stokes waves. Invent. math. 166, 523-535 (2006) · Zbl 1108.76013
[48] Toland, J. F.: Stokes waves. Topol. methods nonlinear anal. 7, 1-48 (1996) · Zbl 0897.35067
[49] Constantin, A.; Escher, J.: Particle trajectories in solitary water waves. Bull. amer. Math. soc. 44, 423-431 (2007) · Zbl 1126.76012
[50] Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. trans. R. soc. Lond. ser. A 289, 373-404 (1978) · Zbl 0384.65049
[51] Zhou, Jiangbo; Tian, Lixin: A type of bounded traveling wave solutions for the fornberg--Whitham equation. J. math. Anal. appl. 346, 255-261 (2008) · Zbl 1146.35025
[52] Jiangbo Zhou, Lixin Tian, Solitons, peakons and periodic cusp wave solutions for the Fornberg--Whitham equation, Nonlinear Anal. RWA., doi:10.1016/j.nonrwa.2008.11.014 · Zbl 1181.35222
[53] Tian, Lixin; Fan, Jinling; Tian, Ruihua: The attractor on viscosity peakon b-family of equations. Int. J. Nonlinear sci. 4, No. 3, 163-170 (2007)
[54] Tian, Lixin; Tian, Ruihua; Fan, Jinling: The global attractor for the viscous weakly damped forced Korteweg-de Vries equations in $H1(R)$. Int. J. Nonlinear sci. 5, No. 1, 3-10 (2008)
[55] Tian, Lixin; Gui, Gui Long; Liu, Yue: On the well-posedness problem and scattering problem for DGH equation. Comm. math. Phys. 257, No. 3, 667-701 (2005) · Zbl 1080.76016
[56] Zhang, Wenbin; Tian, Lixin; Peng, Dejun: Asymptotic smoothing and the global attractor of weakly damped forced KdV equation on the real line. J. JiangSu univ. Sci. technol. 12, No. 6A, 38-42 (2005) · Zbl 1111.35319
[57] Fu, Yiping; Guo, Boling: Almost periodic solution of one dimensional viscous Camassa--Holm equation. Acta math. Sci. 27, No. 1, 117-124 (2007) · Zbl 1125.35082
[58] Tian, Lixin; Fan, Jinling: The attractor on viscosity Degasperis--Procesi equation. Nonlinear anal. RWA 9, No. 4, 1461-1473 (2007) · Zbl 1154.37321
[59] Anna Gao, Lixin Tian, The global attractor of the viscous damped forced Ostrovsky equation, Nonlinear Anal.RWA, doi:10.1016/j.nonrwa.2008.09.008 · Zbl 1173.35381
[60] Tian, Lixin; Tian, Ruihua: The attractor for the two-dimensional weakly damped KdV equation in belt field. Nonlinear anal. RWA 9, No. 3, 912-919 (2008) · Zbl 1147.35089