Degenerate differential operators with parameters. (English) Zbl 1181.35112

The author studies nonlocal boundary value problems for regular degenerate differential-operator equations with parameters. A form of a nonlocal boundary value problem is given by \[ L_0(\lambda,t)u=-tu^{|2|}(x)+(A+\lambda)u(x)=0, \text{ together with} \]
\[ L_1u= \alpha_0t^{\theta_1}u^{\lfloor m_1\rfloor}(0)= f_1\quad L_2u=\beta_0 t^{\theta_2}u^{\lfloor m_1\rfloor}(1)=f_2, \] where \(m_k\in [0,1]\); \(\alpha_k,\beta_k,\delta_{kj}\) are complex numbers, \(A\) is, generally speaking, an unbounded operator in \(E\). One of the big theorems proven is as follows: Let \(A\) be a positive operator in a Banach space \(E\) for \(\vartheta\in (0,\pi]\), \(0\leq\nu<1-1/p\), \(p\in(1,\infty)\), \(0<t<t_0< \infty\), \(\alpha_0\neq 0\), \(\beta_0\neq 0\). The problem above for \(f_k\in E_k\), \(|\arg\lambda|\leq\pi-\vartheta\), for sufficiently large \(|\lambda|\) and \(t\), has a unique solution \(u\) belonging to the space, \(W^{[2]}_{p, \gamma}(0,1;E(A),E)\), and has a very coercive uniform estimate given in the paper. The principal parts of the appropriate generated differential operators are non-self-adjoint. Several conditions for the maximal regularity uniformly with respect to the parameter and the Fredholmness in Banach-valued \(L_p\) spaces are given for these problems. In applications, the nonlocal boundary value problems for degenerated elliptic partial differential equations and for systems of elliptic equations with parameters are studied on cylindrical domains.


35J70 Degenerate elliptic equations
35J57 Boundary value problems for second-order elliptic systems
47F05 General theory of partial differential operators
34G10 Linear differential equations in abstract spaces
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI EuDML


[1] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. 1, vol. 89 of Monographs in Mathematics, Birkhäuser Boston, Boston, Mass, USA, 1995. · Zbl 0819.35001
[2] S. G. Kreĭn, Linear Differential Equations in Banach Space, American Mathematical Society, Providence, RI, USA, 1971. · Zbl 0233.47001
[3] A. Ya. Shklyar, Complete Second Order Linear Differential Equations in Hilbert Spaces, vol. 92 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1997. · Zbl 0873.34049
[4] S. Yakubov and Y. Yakubov, Differential-Operator Equations: Ordinary and Partial Differential Equations, vol. 103 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2000. · Zbl 0936.35002
[5] F. Zimmermann, “On vector-valued Fourier multiplier theorems,” Studia Mathematica, vol. 93, no. 3, pp. 201-222, 1989. · Zbl 0686.42008
[6] J.-P. Aubin, “Abstract boundary-value operators and their adjoints,” Rendiconti del Seminario Matematico della Università di Padova, vol. 43, pp. 1-33, 1970. · Zbl 0247.47042
[7] A. Ashyralyev, “On well-posedness of the nonlocal boundary value problems for elliptic equations,” Numerical Functional Analysis and Optimization, vol. 24, no. 1-2, pp. 1-15, 2003. · Zbl 1055.35018 · doi:10.1081/NFA-120020240
[8] C. Dore and S. Yakubov, “Semigroup estimates and non coercive boundary value problems,” Semigroup Forum, vol. 60, pp. 93-121, 2000. · Zbl 0947.47033 · doi:10.1007/s002330010005
[9] A. Favini, “Su un problema ai limiti per certe equazioni astratte del secondo ordine,” Rendiconti del Seminario Matematico della Università di Padova, vol. 53, pp. 211-230, 1975. · Zbl 0326.34070
[10] P. E. Sobolevskiĭ, “Coerciveness inequalities for abstract parabolic equations,” Doklady Akademii Nauk SSSR, vol. 157, no. 1, pp. 52-55, 1964. · Zbl 0149.36001
[11] V. B. Shakhmurov, “Embedding theorems and their applications to degenerate equations,” Differential Equations, vol. 24, no. 4, pp. 475-482, 1988. · Zbl 0672.46014
[12] V. B. Shakhmurov, “Theorems on the embedding of abstract function spaces and their applications,” Mathematics of the USSR-Sbornik, vol. 62, no. 1, pp. 261-276, 1989. · Zbl 0662.46043 · doi:10.1070/SM1989v062n01ABEH003239
[13] V. B. Shakhmurov, “Coercive boundary value problems for strongly degenerate operator-differential equations,” Doklady Akademii Nauk SSSR, vol. 290, no. 3, pp. 553-556, 1986. · Zbl 0649.35084
[14] R. Denk, M. Hieber, and J. Prüss, “\?-boundedness, Fourier multipliers and problems of elliptic and parabolic type,” Memoirs of the American Mathematical Society, vol. 166, no. 788, p. viii+114, 2003. · Zbl 1274.35002
[15] V. B. Shakhmurov, “Embedding operators and maximal regular differential-operator equations in Banach-valued function spaces,” Journal of Inequalities and Applications, vol. 2005, no. 4, pp. 329-345, 2005. · Zbl 1119.46034 · doi:10.1155/JIA.2005.329
[16] V. B. Shakhmurov, “Coercive boundary value problems for regular degenerate differential-operator equations,” Journal of Mathematical Analysis and Applications, vol. 292, no. 2, pp. 605-620, 2004. · Zbl 1060.35045 · doi:10.1016/j.jmaa.2003.12.032
[17] V. B. Shakhmurov, “Embedding and maximal regular differential operators in Sobolev-Lions spaces,” Acta Mathematica Sinica (English Series), vol. 22, no. 5, pp. 1493-1508, 2006. · Zbl 1151.35020 · doi:10.1007/s10114-005-0764-5
[18] O. V. Besov, V. P. Il’in, and S. M. Nikol’skiĭ, Integral Representations of Functions, and Embedding Theorems, Izdat. “Nauka”, Moscow, Russia, 1975. · Zbl 0352.46023
[19] J. Bourgain, “Some remarks on Banach spaces in which martingale difference sequences are unconditional,” Arkiv für Matematik, vol. 21, no. 2, pp. 163-168, 1983. · Zbl 0533.46008 · doi:10.1007/BF02384306
[20] D. L. Burkholder, “A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions,” in Conference on Harmonic Analysis in Honor of A. Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pp. 270-286, Wadsworth, Belmont, Calif, USA, 1983.
[21] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, vol. 18 of North-Holland Mathematical Library, North-Holland, Amsterdam, The Netherlands, 1978. · Zbl 0387.46032
[22] H. Triebel, “Spaces of distributions with weights. Multipliers in Lp-spaces with weights,” Mathematische Nachrichten, vol. 78, pp. 339-355, 1977. · Zbl 0376.46020 · doi:10.1002/mana.19770780131
[23] R. Haller, H. Heck, and A. Noll, “Mikhlin’s theorem for operator-valued Fourier multipliers in n variables,” Mathematische Nachrichten, vol. 244, no. 1, pp. 110-130, 2002. · Zbl 1054.47013 · doi:10.1002/1522-2616(200210)244:1<110::AID-MANA110>3.0.CO;2-S
[24] M. Hieber and J. Prüss, “Heat kernels and maximal Lp-Lq estimates for parabolic evolution equations,” Communications in Partial Differential Equations, vol. 22, no. 9-10, pp. 1647-1669, 1997. · Zbl 0886.35030 · doi:10.1080/03605309708821314
[25] P. Krée, “Sur les multiplicateurs dans \Cal FLp avec poids,” Annales de l’Institut Fourier. Université de Grenoble, vol. 16, no. 2, pp. 91-121, 1966. · Zbl 0145.38402 · doi:10.5802/aif.237
[26] P. I. Lizorkin, “(Lp,Lq)-multipliers of Fourier integrals,” Doklady Akademii Nauk SSSR, vol. 152, pp. 808-811, 1963. · Zbl 0156.12902
[27] L. Weis, “Operator-valued Fourier multiplier theorems and maximal Lp-regularity,” Mathematische Annalen, vol. 319, no. 4, pp. 735-758, 2001. · Zbl 0989.47025 · doi:10.1007/PL00004457
[28] G. Pisier, “Some results on Banach spaces without local unconditional structure,” Compositio Mathematica, vol. 37, no. 1, pp. 3-19, 1978. · Zbl 0381.46010
[29] S. Yakubov, Completeness of Root Functions of Regular Differential Operators, vol. 71 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, UK, 1994. · Zbl 0833.34081
[30] D. Lamberton, “Équations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces Lp,” Journal of Functional Analysis, vol. 72, no. 2, pp. 252-262, 1987. · Zbl 0621.47039 · doi:10.1016/0022-1236(87)90088-7
[31] G. Dore and A. Venni, “On the closedness of the sum of two closed operators,” Mathematische Zeitschrift, vol. 196, no. 2, pp. 189-201, 1987. · Zbl 0615.47002 · doi:10.1007/BF01163654
[32] J.-L. Lions and J. Peetre, “Sur une classe d’espaces d’interpolation,” Institut des Hautes Études Scientifiques. Publications Mathématiques, no. 19, pp. 5-68, 1964. · Zbl 0148.11403 · doi:10.1007/BF02684796
[33] S. G. Kreĭn, Linear Equations in Banach Spaces, Birkhäuser Boston, Boston, Mass, USA, 1982. · Zbl 0535.47008
[34] M. S. Agranovi\vc and M. I. Vi\vsik, “Elliptic problems with a parameter and parabolic problems of general type,” Uspekhi Matematicheskikh Nauk, vol. 19, no. 3 (117), pp. 53-161, 1964. · Zbl 0137.29602 · doi:10.1070/RM1964v019n03ABEH001149
[35] S. Agmon and L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach space,” Communications on Pure and Applied Mathematics, vol. 16, pp. 121-239, 1963. · Zbl 0117.10001 · doi:10.1002/cpa.3160160204
[36] P. Grisvard, Elliptic Problem in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman, Boston, Mas, USA, 1985. · Zbl 0695.35060
[37] D. S. Jerison and C. E. Kenig, “The Dirichlet problem in nonsmooth domains,” Annals of Mathematics. Second Series, vol. 113, no. 2, pp. 367-382, 1981. · Zbl 0434.35027 · doi:10.2307/2006988
[38] V. A. Kondratiev and O. A. Oleinik, “Boundary value problems for partial differential equations in non-smooth domains,” Russian Mathematical Surveys, vol. 38, no. 2, pp. 1-86, 1983. · Zbl 0548.35018 · doi:10.1070/RM1983v038n02ABEH003470
[39] S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, vol. 13 of de Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin, Germany, 1994. · Zbl 0806.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.