×

zbMATH — the first resource for mathematics

Asymptotic behavior of eigenvalues of the Laplace operator in thin infinite tubes. (English. Russian original) Zbl 1181.35150
Math. Notes 85, No. 5, 661-673 (2009); translation from Mat. Zametki 85, No. 5, 687-701 (2009).
Summary: We obtain an asymptotic expansion for the eigenvalues of the Laplace operator with zero Dirichlet conditions in tubes, i.e., in infinite bent cylinders with internal torsion under uniform contraction of their cross-sections, with respect to a small parameter characterizing the transverse dimensions of the tube. A method of reducing the problem of determining the eigenvalues to the solution of an implicit equation is proposed.

MSC:
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. P. Maslov, ”An asymptotic expression for the eigenfunctions of the equation {\(\Delta\)}u + k 2 u = 0 with boundary conditions on equidistant curves and the propagation of electromagnetic waves in a waveguide,” Dokl. Akad. Nauk SSSR 123(4), 631–633 (1958) [Soviet Math. Dokl. 123 (3), 1132–1135 (1959)].
[2] V. P. Maslov, ”Mathematical aspects of integral optics,” Russ. J. Math. Phys. 8(1), 83–105 (2001). · Zbl 1082.78500
[3] V. P. Maslov and E. M. Vorob’ev, ”On one-mode open resonators,” Dokl. Akad. Nauk SSSR 179(3), 558–561 (1968).
[4] V. V. Belov, S. Yu. Dobrokhotov, and S. O. Sinitsyn, ”Asymptotic solutions of the Schrödinger equation in thin tubes,” Trudy Inst. Mat. Mekh. (Ural Otd., Russian Academy of Sciences) 9(1), 1–11 (2003). · Zbl 1126.35354
[5] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, and T. Y. Tudorovskii, ”Semiclassical approximation and the Maslov canonical operator for nonrelativistic equations of quantum mechanics in nanotubes,” Dokl. Ross. Akad. Nauk 393(4), 460–464 (2003).
[6] V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, ”Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account,” Russ. J. Math. Phys. 11(1), 109–119 (2004). · Zbl 1186.81061
[7] V. V. Belov, S. Yu. Dobrokhotov, and T. Y. Tudorovskii, ”Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes: I. Reduction to spatially one-dimensional equations,” Teoret. Mat. Fiz. 141(2), 267–303 (2004) [Theoret. and Math. Phys. 141 (2), 1562–1592 (2004)]. · Zbl 1178.81080
[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, and T. Y. Tudorovskii, ”A generalized adiabatic principle for electron dynamics in curved nanostructures,” Uspekhi Fiz. Nauk 175(9), 1004–1010 (2005) [Soviet Phys. Uspekhi, No. 48, 962 (2005)].
[9] P. Duclos and P. Exner, ”Curvature-induced bound states in quantum waveguides in two and three dimensions,” Rev. Math. Phys. 7(1), 73–102 (1995). · Zbl 0837.35037
[10] P. Exner and P. Šeba, ”Bound States in curved quantum waveguides,” J. Math. Phys. 30(11), 2574–2580 (1989). · Zbl 0693.46066
[11] P. Exner, ”Bound states in quantum waveguides of a slowly decaying curvature,” J. Math. Phys. 34(1), 23–28 (1993). · Zbl 0767.35051
[12] P. Exner, ”A quantum pipette,” J. Phys. A 28(18), 5323–5330 (1995). · Zbl 0868.81001
[13] W. Bulla, F. Gesztesy, W. Renger, and B. Simon, ”Weakly couped bound states in quantum waveguides,” Proc. Amer. Math. Soc. 125(5), 1487–1495 (1997). · Zbl 0868.35080
[14] P. Exner and S. A. Vugalter, ”Bounds states in a locally deformed waveguide: the critical value,” Lett. Math. Phys. 39(1), 59–68 (1997). · Zbl 0871.35067
[15] D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčiřík, ”Bound states in a weakly deformed strips and layers,” Ann. Henri Poincaré 2(3), 553–572 (2001). · Zbl 1043.35046
[16] V. V. Grushin, ”On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Mat. Zametki 75(3), 360–371 (2004) [Math. Notes 75 (3–4), 331–340 (2004)]. · Zbl 1111.35022
[17] V. V. Grushin, ”Asymptotic behavior of the eigenvalues of the Schrödinger operator with transversal potential in a weakly curved infinite cylinder,” Mat. Zametki 77(5), 656–664 (2005) [Math. Notes 77 (5–6), 606–613 (2005)]. · Zbl 1082.35113
[18] R. R. Gadyl’shin, ”On local perturbations of quantum waveguides,” Teoret. Mat. Fiz. 145(3), 358–371 (2005) [Theoret. and Math. Phys. 145 (3), 1678–1690 (2005)].
[19] L. I. Magarill and M. V. Éntin, ”Electrons in a curvilinear quantum wire,” Zh. Éxper. Teoret. Fiz. 123(4), 867–876 (2003).
[20] L. Hörmander, Linear Partial Differential Operators, in Grundlehren Math. Wiss. (Springer-Verlag, Berlin-New York, 1963; Mir, Moscow, 1965), Vol. 116.
[21] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators (Academic Press, New York, 1979; Mir Moscow, 1982). · Zbl 0405.47007
[22] B. Chenaud, P. Duclos, P. Freitas, and D. Krejčiřík, ”Geometrically induced discrete spectrum in curved tubes,” Differential Geom. Appl. 23(2), 95–105 (2005). · Zbl 1078.81022
[23] M. S. Agranovich and M. I. Vishik, ”Elliptic problems with a parameter and parabolic problems of general type,” Uspekhi Mat. Nauk 19(3), 53–161 (1964). · Zbl 0137.29602
[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis (Academic Press, New York, 1972; Mir Moscow, 1977). · Zbl 0242.46001
[25] V. V. Grushin, ”On a class of elliptic pseudodifferential operators degenerate on a submanifold,” Mat. Sb. 84(2), 163–195 (1971) [Math. USSR-Sb. 84 (2), 155–185 (1971)]. · Zbl 0238.47038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.