×

Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in \(\mathbb R^{3}\). (English) Zbl 1181.35190

Summary: We consider the regularity problem under the critical condition to some liquid crystal models and the Landau-Lifshitz equations. The Serrin type reularity criteria are obtained in the terms of the Besov spaces.

MSC:

35Q35 PDEs in connection with fluid mechanics
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
76A15 Liquid crystals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lin F H. Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Comm Pure Appl Math, 42: 789–814 (1989) · Zbl 0703.35173
[2] Lin F H, Liu C. Nonparabolic dissipative systems modelling the flow of liquid crystals. Comm Pure Appl Math, 48: 501–537 (1995) · Zbl 0842.35084
[3] Lin F H, Liu C. Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal, 154: 135–156 (2000) · Zbl 0963.35158
[4] Coutand D, Shkoller S. Well posedness of the full Ericksen-Leslye model of nematic liquid crystals. C R Acad Sci Ser I, 333: 919–924 (2001) · Zbl 0999.35078
[5] Chen Y, Struwe M. Existence and partial regularity results for the heat flow of harmonic maps. Math Z, 201: 83–103 (1989) · Zbl 0652.58024
[6] Landau L D, Lifshitz E M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowj, 8: 153–169 (1935) · Zbl 0012.28501
[7] Chen Y, Ding S, Guo B L. Partial regularity for two-dimensional Landau-Lifshitz equations. Acta Math Sin, 14(3): 423–432 (1998) · Zbl 0906.35025
[8] Guo B L, Hong M. The Landau-Lifshitz equations of the ferromagnetic spin chain and harmonic maps. Calc Var PDE, 1: 311–334 (1993) · Zbl 0798.35139
[9] Liu X. Partial regularity for the Landau-Lifshitz systems. Calc Var PDE, 20(2): 153–173 (2003) · Zbl 1058.58008
[10] Zhou Y, Guo B L. Existence of weak solution for boundary problems of systems of ferromagnetic chain. Sci China Ser A-Math, 27: 799–811 (1984) · Zbl 0571.35058
[11] Zhou Y, Guo B L. Weak solution systems of ferromagnetic chain with several variables. Sci China Ser A-Math, 30: 1251–1266 (1987) · Zbl 0656.35123
[12] Zhou Y, Guo B L, Tan S. Existence and uniqueness of smooth solution of systems of ferromagnetic chain. Sci China Ser A-Math, 34: 257–266 (1991) · Zbl 0752.35074
[13] Zhou Y, Sun H, Guo B L. Multidimensional system of ferromagnetic chain type. Sci China Ser A-Math, 36: 1422–1434 (1993) · Zbl 0798.35140
[14] Alouges F, Soyeur A. On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Analysis, 18(11): 1084–1096 (1992) · Zbl 0788.35065
[15] Carbou G, Fabrie P. Regular solutions for Landau-Lifshitz equation in a bounded domain. Differential Inteqrals Equations, 14: 213–229 (2001) · Zbl 1161.35421
[16] Leray J. Sur le mouvement d’un liquide visqeux emplissant 1’espace. Acta Math, 63: 193–248 (1934) · JFM 60.0726.05
[17] Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 48: 173–182 (1959) · Zbl 0148.08202
[18] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Ration Mech Anal, 9: 187–195 (1962) · Zbl 0106.18302
[19] Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 62: 186–212 (1986) · Zbl 0577.35058
[20] da Veiga H B. A new regularity class for the Navier-Stoekes equations in \(\mathbb{R}\)n. Chinese Ann Math Ser B, 16: 407–412 (1995) · Zbl 0837.35111
[21] Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations. Math Z, 242: 251–278 (2002) · Zbl 1055.35087
[22] Miao C X. Harmonic Analysis and its Applications in PDE (in Chinese), 2nd ed. Beijing: Science Press, 2004
[23] Triebel H. Theory of function Spaces II. Basel: Birkhäuser, 1992 · Zbl 0763.46025
[24] Kozono H, Shimada Y. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math Nachr, 276: 63–74 (2004) · Zbl 1078.35087
[25] Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. London: Chapman & Hall/CRC, 2002 · Zbl 1034.35093
[26] David G, Journé J L. A boundedness criterion for generalized Calderón Zygmund operators. Ann of Math, 120: 371–397 (1984) · Zbl 0567.47025
[27] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 41: 891–907 (1988) · Zbl 0671.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.