Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids. (English) Zbl 1181.35343

Summary: We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows, we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier-Stokes and Mullins-Sekerka type parts that coincides with the asymptotic limit of a diffuse interface model. We prove the long-time existence of weak solutions, which is an open problem for the classical two-phase model. We show that the phase interfaces have in almost all points a generalized mean curvature.


35R35 Free boundary problems for PDEs
35Q30 Navier-Stokes equations
76D45 Capillarity (surface tension) for incompressible viscous fluids
76T99 Multiphase and multicomponent flows
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI arXiv EuDML


[1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Rat. Mech. Anal., doi:10.1007/s00205-008-0160-2; H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Rat. Mech. Anal., doi:10.1007/s00205-008-0160-2 · Zbl 1254.76158
[2] Abels, H., On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces Free Bound., 9, 31-65 (2007) · Zbl 1124.35060
[3] Abels, H., On the notion of generalized solutions of two-phase flows for viscous incompressible fluids, RIMS Kôkyûroku Bessatsu, B1, 1-15 (2007)
[4] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. (2000), Clarendon Press: Clarendon Press Oxford, xviii, p. 434 · Zbl 0957.49001
[5] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20, 2, 175-212 (1999) · Zbl 0937.35123
[6] Chen, X., Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential Geom., 44, 2, 262-311 (1996) · Zbl 0874.35045
[7] Denisova, I. V.; Solonnikov, V. A., Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Funktsii. Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor., 22, 5-44 (1991), 186 · Zbl 0756.35067
[8] Edwards, R. E., Functional Analysis (1995), Dover Publications, Inc.: Dover Publications, Inc. New York, 783 p · Zbl 0189.12103
[9] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math. (1992), CRC Press: CRC Press Boca Raton, FL · Zbl 0626.49007
[10] Gurtin, M. E.; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 6, 815-831 (1996) · Zbl 0857.76008
[11] Hoffmann, K.-H.; Starovoitov, V. N., Phase transitions of liquid-liquid type with convection, Adv. Math. Sci. Appl., 8, 1, 185-198 (1998) · Zbl 0958.35152
[12] Hohenberg, P.; Halperin, B., Theory of dynamic critical phenomena, Rev. Modern Phys., 49, 435-479 (1977)
[13] Kim, N.; Consiglieri, L.; Rodrigues, J. F., On non-Newtonian incompressible fluids with phase transitions, Math. Methods Appl. Sci., 29, 13, 1523-1541 (2006) · Zbl 1101.76004
[14] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179, 3-4, 211-228 (2003) · Zbl 1092.76069
[15] Luckhaus, S.; Sturzenhecker, T., Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3, 2, 253-271 (1995) · Zbl 0821.35003
[16] Maekawa, Y., On a free boundary problem for viscous incompressible flows, Interfaces Free Bound., 9, 4, 549-589 (2007) · Zbl 1132.76303
[17] Modica, L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 2, 123-142 (1987) · Zbl 0616.76004
[18] Modica, L.; Mortola, S., Un esempio di \(\Gamma^-\)-convergenza, Boll. Unione Mat. Ital. B (5), 14, 1, 285-299 (1977) · Zbl 0356.49008
[19] Plotnikov, P., Generalized solutions to a free boundary problem of motion of a non-Newtonian fluid, Siberian Math. J., 34, 4, 704-716 (1993) · Zbl 0814.76007
[20] Röger, M., Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation, Interfaces Free Bound., 6, 1, 105-133 (2004) · Zbl 1050.35155
[21] Schätzle, R., Hypersurfaces with mean curvature given by an ambient Sobolev function, J. Differential Geom., 58, 3, 371-420 (2001) · Zbl 1055.49032
[22] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl. (4), 146, 65-96 (1987) · Zbl 0629.46031
[23] Simon, L., Lectures on geometric measure theory, vol. 3, (Proceedings of the Centre for Mathematical Analysis, Australian National University (1983), Australian National University Centre for Mathematical Analysis: Australian National University Centre for Mathematical Analysis Canberra) · Zbl 0546.49019
[24] Sohr, H., The Navier-Stokes equations, (Birkhäuser Advanced Texts: Basler Lehrbücher (2001), Birkhäuser Verlag: Birkhäuser Verlag Basel), an elementary functional analytic approach · Zbl 0855.35099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.