zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variable order differential equations with piecewise constant order-function and diffusion with changing modes. (English) Zbl 1181.35359
Summary: Diffusion processes with changing modes are studied involving the variable order partial differential equations. We prove the existence and uniqueness theorem of a solution of the Cauchy problem for fractional variable order (with respect to the time derivative) pseudo-differential equations. Depending on the parameters of variable order derivatives short or long range memories may appear when diffusion modes change. These memory effects are classified and studied in detail. Processes that have distinctive regimes of different types of diffusion depending on time are ubiquitous in the nature. Examples include diffusion in a heterogeneous media and protein movement in cell biology.

35S10Initial value problems for pseudodifferential operators
26A33Fractional derivatives and integrals (real functions)
45K05Integro-partial differential equations
35A08Fundamental solutions of PDE
35S15Boundary value problems for pseudodifferential operators
33E12Mittag-Leffler functions and generalizations
Full Text: DOI Link arXiv
[1] Andries, E., Umarov, S. and Steinberg, S., Monte Carlo random walk simula- tions based on distributed order differential equations with application to cell biology. Frac. Calc. Appl. Anal. 9 (2006)(4), 351 - 369. · Zbl 1132.65114 · eudml:11288 · arxiv:math/0606797
[2] Applebaum, D., Lévy Processes and Stochastic Calculus. Cambridge: Cam- bridge Univ. Press 2004.
[3] Billingsley, P., Probability and Measure. New York: John Wiley & Sons 1995. 449 · Zbl 0822.60002
[4] Caputo, M., Linear models of dissipation whose Q is almost frequency inde- pendent. II. Geophys. J. R. Astr. Soc. 13 (1967), 529 - 539.
[5] Chechkin, A. V., Gorenflo, R. and Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equation. Phys. Rev. E 66 (2002), 046129, 1 - 6.
[6] Chechkin, A. V., Gorenflo, R. and Sokolov, I. M., Fractional diffusion in inho- mogeneous media. J. Physics A: Math. Gen. 38 (2005), L679 - L684.
[7] Djrbashian, M. M., Harmonic Analysis and Boundary Value Problems in the Complex Domain. Basel: Birkhäuser 1993. · Zbl 0798.43001
[8] Dubinski?ı, Yu. A., On a method of solving partial differential equations (in Russian). Dokl. Akad. Nauk SSSR 258 (1981), 780 - 784; transl. in: Sov. Math. Dokl. 23 (1981), 583 - 587.
[9] Edidin, M., Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7 (1997), 528 - 532.
[10] Ghosh, R. N. and Webb, W. W., Automated detection and tracking of indi- vidual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66 (1994), 1301 - 1318.
[11] Gorenflo, R., Luchko, Yu. and Umarov, S., On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order. Fract. Calc. Appl. Anal. 3 (2000)(3), 249 - 277. · Zbl 1033.35160
[12] Gorenflo, R. and Mainardi, F., Simply and multiply scaled diffusion limits for continuous time random walk. J. Phys. Conf. Ser. 7 (2005), 1 - 16.
[13] Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G. and Paradisi, P., Discrete random walk models for space-time fractional diffusion. Chemical Phys. 284 (2002), 521 - 541.
[14] Hoh, W., Pseudo differential operators with negative definite symbols of vari- able order. Rev. Mat. Iberoamericana 16 (2000)(2), 219 - 241. · Zbl 0977.35151 · doi:10.4171/RMI/274 · eudml:39606
[15] Jacob, N. and Leopold H.-G., Pseudo-differential operators with variable order of differentiation generating Feller semigroups. Integr. Equ. Oper. Theory 17 (1993), 544 - 553. · Zbl 0793.35139 · doi:10.1007/BF01200393
[16] Liu, F., Shen, S., Anh, V. and Turner, I., Analysis of a discrete non- Markovian random walk approximation for the time fractional diffusion equa- tion. ANZIAM J. 46 (2005), C488 - C504.
[17] Lorenzo, C. F. and Hartley, T. T., Variable order and distributed order frac- tional operators. Nonlin. Dynam. 29 (2002), 57 - 98. · Zbl 1018.93007 · doi:10.1023/A:1016586905654
[18] Meerschaert, M. and Scheffler, H.-P., Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006)(9), 1215 - 1235. · Zbl 1100.60024 · doi:10.1016/j.spa.2006.01.006
[19] Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports 339 (2000), 1 - 77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[20] Metzler, R. and Klafter, J., The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Physics. A: Math. Gen. 37 (2004), R161 - R208.