Chen, Xiangrong; Liu, Chongxin Passive control on a unified chaotic system. (English) Zbl 1181.37038 Nonlinear Anal., Real World Appl. 11, No. 2, 683-687 (2010). Summary: In this paper, based on the stability properties of a passive system, a simple linear state feedback controller is proposed to realize the stability control of a unified chaotic system. Using this method, we can render the non-passive unified chaotic system to be equivalent to a passive one. Simulation results are shown to verify the effectiveness of the proposed controller. Cited in 23 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 93B52 Feedback control Keywords:chaos; passive control; unified chaotic system PDF BibTeX XML Cite \textit{X. Chen} and \textit{C. Liu}, Nonlinear Anal., Real World Appl. 11, No. 2, 683--687 (2010; Zbl 1181.37038) Full Text: DOI References: [1] Lorenz, E. N., J. Atmospheric Sci., 20, 130 (1963) [2] Chua, L. O.; Komuro, M.; Matsumoto, T., IEEE Trans. CAS, 33, 1072 (1986) [3] Chen, G. R.; Ueta, T., Internat. J. Bifur. Chaos, 9, 1465 (1999) [4] Sprott, J. C., Phys. Lett. A, 266, 19 (2000) [5] Lü, J. H.; Chen, G. R., Intenat. J. Bifur. Chaos, 12, 695 (2002) [6] Liu, C. X.; Liu, T.; Liu, L.; Liu, K., Chaos Solitions Fractals, 22, 1031 (2004) [7] Ott, E.; Grebogi, C.; Yorke, J. A., Phys. Rev. Lett., 64, 1196 (1990) [8] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) [9] Chen, G. R.; Yu, X. H., Chaos Control: Theory and Applications (2003), Springer: Springer Berlin [10] Lü, J. H.; Chen, G. R.; Cheng, D. Z.; Serget, C., Internat. J. Bifur. Chaos, 12, 2917 (2002) [11] Chen, G. R.; Lü, J. H., Dynamics Analysis, Control and Synchronization of Generalized Lorenz System (2003), Science Press: Science Press Bei Jing [12] Qi, D. L.; Song, Y. Z., J. Zhejiang Univ. Sci., 7, 223 (2006) [13] Wang, F. Q.; Liu, C. X., Chinese Phys., 16, 946 (2007) [14] Byrnes, C. I.; Isidori, A.; Willems, J. C., IEEE Trans. Automat. Control., 36, 1228 (1991) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.