×

zbMATH — the first resource for mathematics

Hyperplace arrangements and box splines. (English) Zbl 1181.41011
From the authors’ abstract: The purpose of this paper is to explain some explicit formulas that one can develop in the theory of the box spline and the corresponding algorithms of approximation by functions.

MSC:
41A15 Spline approximation
05B35 Combinatorial aspects of matroids and geometric lattices
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, Encyclopedia Math. Appl., 40, pp. 226–283, Cambridge Univ. Press, Cambridge, 1992. · Zbl 0772.05027
[2] A. Cavaretta, W. Dahmen, and C. Micchelli, Stationary subdivisions , Mem. Amer. Math. Soc. 453 (1991). · Zbl 0741.41009
[3] W. Dahmen and C. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52 (1983), 217–234. · Zbl 0522.41009
[4] ——, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), 243–263. · Zbl 0545.41018 · eudml:218687
[5] ——, On the solution of certain systems of partial difference equations and linear independence of the translates of box splines, Trans. Amer. Math. Soc. 292 (1985), 305–320. JSTOR: · Zbl 0637.41012 · doi:10.2307/2000181 · links.jstor.org
[6] C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx. 3 (1987), 199–308. · Zbl 0624.41013 · doi:10.1007/BF01890564
[7] C. de Boor, K. Höllig, and S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993.
[8] C. de Boor, A. Ron, and Z. Shen, On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators, Adv. in Appl. Math. 17 (1996), 209–250. · Zbl 0999.47001 · doi:10.1006/aama.1996.0011
[9] ——, On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators II, Adv. Math. 123 (1996), 223–242. · Zbl 0917.47001 · doi:10.1006/aima.1996.0072
[10] C. De Concini and C. Procesi, Nested sets and Jeffrey Kirwan residues, Geometric methods in algebra and number theory (F. Bogomolov, Y. Tschinkel, eds.), Progr. Math., 235, pp. 139–150, Birkhäuser, Boston, 2005. · Zbl 1093.52503 · doi:10.1007/0-8176-4417-2_6
[11] ——, Topics in hyperplane arrangements, polytopes and box-splines (in preparation). · Zbl 1217.14001 · doi:10.1007/978-0-387-78963-7
[12] N. Dyn and A. Ron, Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems, Trans. Amer. Math. Soc. 319 (1990), 381–403. JSTOR: · Zbl 0699.41012 · doi:10.2307/2001350 · links.jstor.org
[13] A. M. Garsia, Combinatorial methods in the theory of Cohen–Macaulay rings, Adv. Math. 38 (1980), 229–266. · Zbl 0461.06002 · doi:10.1016/0001-8708(80)90006-7
[14] M. Hochster, Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. JSTOR: · Zbl 0237.14019 · doi:10.2307/1970791 · links.jstor.org
[15] R. Q. Jia, S. D. Riemenschneider, and Z. Shen, Dimension of kernels of linear operators, Amer. J. Math. 114 (1992), 157–184. JSTOR: · Zbl 0754.41015 · doi:10.2307/2374741 · links.jstor.org
[16] B. Kind and P. Kleinschmidt, Schälbare Cohen–Macaulay-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979), 173–179. · Zbl 0388.13015 · doi:10.1007/BF01215121 · eudml:172845
[17] T. Lyche, C. Manni, and P. Sablonnière, Quasi-interpolation projectors for box splines, J. Comput. Appl. Math. (to appear).
[18] T. Lyche and L. L. Schumaker, Local spline approximation methods, J. Approx. Theory 15 (1975), 294–325. · Zbl 0315.41011 · doi:10.1016/0021-9045(75)90091-X
[19] A. Ron, Lecture notes on hyperplane arrangements and zonotopes, Univ. Wisconsin, Spring 2007. · Zbl 1211.51004
[20] I. J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Regional Conf. Ser. in Appl. Math., 12, SIAM, Philadelphia, 1973. · Zbl 0264.41003
[21] Z. Shen, Dimension of certain kernel spaces of linear operators, Proc. Amer. Math. Soc. 112 (1991), 381–390. · Zbl 0729.35030 · doi:10.2307/2048730
[22] R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progr. Math., 41, Birkhäuser, Boston, 1996. · Zbl 0838.13008
[23] G. Strang and G. Fix, A Fourier analysis of the finite element variational method, C.I.M.E. II (Ciclo, 1971), Constructive aspects of functional analysis (G. Geymonat, ed.), Edizioni Cremonese, Rome, 1973. · Zbl 0278.65116
[24] ——, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, NJ, 1973. · Zbl 0356.65096
[25] W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1–47. · Zbl 0151.33801
[26] N. White (ed.), Theory of matroids / Combinatorial geometries / Matroid applications, Cambridge Univ. Press, Cambridge, 1986 / 1987 / 1992. · Zbl 0579.00001
[27] K. Yosida, Functional analysis, 6th ed., Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin, 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.