zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the exact constant in the Jackson-Stechkin inequality for the uniform metric. (English) Zbl 1181.41017
In the well-known Jackson-Stechkin inequality the value of the best approximation $ E_{n-1}(f)$ of a $2\pi -$periodic function by trigonometric polynomials of degree $\leq n-1$ is estimated by $r-$th modolus of smoothness $\omega _r$ of $f$. This inequality has the form $$E_{n-1}(f)\leq c_r w_r(f;\frac{2\pi}{n}),$$ where $c_r$ is some constant that depends only on $r$. The main result is that $$ (1-\frac{1}{r+1})\gamma _r^*\leq c_r<5\gamma_r^*,\ \text{ where }\gamma _r^*= \frac{1}{{r\choose [\frac{r}{2}]}}\asymp \frac{r^{1/ 2}}{2^r}.$$ Moreover, the same upper bound is valid for the constant $c_{r,p}$ in the Stechkin inequality for $L_p-$metrics with $p\in [1,\infty ).$

41A17Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
41A44Best constants (approximations and expansions)
42A10Trigonometric approximation
Full Text: DOI arXiv
[1] Brudnyi, Yu.A.: On a theorem of local best approximations. Kazan. Gos. Univ. Uchen. Zap. 124(6), 43--49 (1964) (in Russian)
[2] Chernykh, N.I.: The best approximation of periodic functions by trigonometric polynomials in L 2. Mat. Zametki 2, 513--522 (1967). Math. Notes 2(5--6), 818--821 (1967)
[3] DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993) · Zbl 0797.41016
[4] Freud, G., Popov, V.A.: Certain questions connected with approximation by spline-functions and polynomials. Studia Sci. Math. Hung. 5, 161--171 (1970) (in Russian) · Zbl 0201.39601
[5] Galkin, P.V.: Estimate for Lebesgue constants. Trudy Mat. Inst. Steklov 109, 3--5 (1971). Proc. Steklov Inst. Math. 109, 1--4 (1971)
[6] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000) · Zbl 0981.65001
[7] Ivanov, V.I.: On the approximation of functions in L p spaces. Mat. Zametki 56(2), 15--40 (1994), Math. Notes 56(1--2), 770--789 (1994) · Zbl 0835.41030
[8] Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Nauka, Moscow (1977). Pergamon, Oxford (1982) · Zbl 0127.06102
[9] Korneichuk, N.P.: The exact constant in D. Jackson’s theorem on uniform approximation of continuous periodic functions. Dokl. Akad. Nauk SSSR 145, 514--515 (1962), Sov. Math. Dokl. 3, 1040--1041 (1962)
[10] Stechkin, S.B.: On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 15, 219--242 (1951) (in Russian)
[11] Stechkin, S.B.: On de la Vallée Poussin sums. Dokl. Akad. Nauk SSSR 80(4), 545--548 (1951) (in Russian) · Zbl 0045.34003