Zhou, Guangming A descent algorithm without line search for unconstrained optimization. (English) Zbl 1181.65090 Appl. Math. Comput. 215, No. 7, 2528-2533 (2009). Author’s abstract: A new descent algorithm for solving unconstrained optimization problem is presented. Its search direction is descent and line search procedure can be avoided except for the first iteration. It is globally convergent under mild conditions. The search direction of the new algorithm is generalized and convergence of corresponding algorithm is also proved. Numerical results show that the algorithm is efficient for given test problems. Reviewer: Klaus Schittkowski (Bayreuth) Cited in 1 Document MSC: 65K05 Numerical mathematical programming methods 90C30 Nonlinear programming Keywords:unconstrained optimization; descent method; line search; convergence; numerical result; algorithm Software:minpack PDF BibTeX XML Cite \textit{G. Zhou}, Appl. Math. Comput. 215, No. 7, 2528--2533 (2009; Zbl 1181.65090) Full Text: DOI References: [1] Dai, Y. H.; Yuan, Y., Nonlinear Conjugate Gradient Methods (in Chinese) (2000), Shanghai Science and Technology Press of China: Shanghai Science and Technology Press of China Shanghai [2] Sun, W. Y.; Yuan, Y., Optimization Theory and Methods: Nonlinear Programming (2006), Springer-Verlag: Springer-Verlag New York [3] Shi, Z. J.; Shen, J., Convergence of descent method without line search, Appl. Math. Computat., 167, 94-107 (2005) · Zbl 1084.65064 [4] Barzilai, J.; Borwein, J. M., Two point step size gradient methods, IMA J. Numer. Anal., 8, 141-148 (1988) · Zbl 0638.65055 [5] Dixon, L. C.W., Conjugate directions without line searches, J. Inst. Math. Appl., 11, 317-328 (1973) · Zbl 0259.65060 [6] Dai, Y. H.; Yuan, Y., Alternate minimization gradient method, IMA J. Numer. Anal., 23, 377-393 (2003) · Zbl 1055.65073 [7] Dai, Y. H.; Yuan, Y. J.; Yuan, Y., Modified two-point stepsize gradient methods for unconstrained optimization, Computat. Optimizat. Appl., 22, 103-109 (2002) · Zbl 1008.90056 [8] Dai, Y. H.; Liao, L. Z., R-linear convergence of the Barzilai and Borwein gradient method, IMA J. Numer. Anal., 22, 1-10 (2002) · Zbl 1002.65069 [9] Dai, Y. H.; Zhang, H., An adaptive two-point stepsize gradient algorithm, Numer. Algorithm., 27, 377-385 (2001) · Zbl 0992.65063 [10] Liu, W. B.; Dai, Y. H., Minimization algorithms based on supervisor and searcher cooperation, JOTA, 111, 359-379 (2001) · Zbl 1032.90020 [11] Raydan, M., The Barzilai and Borwein method for the large scale unconstrained minimization problem, SIAM J. Optimizat., 7, 26-33 (1997) · Zbl 0898.90119 [12] Raydan, M., On the Barzilai and Borwein gradient choice of steplength for the gradient method, IMA J. Numer. Anal., 13, 321-326 (1993) · Zbl 0778.65045 [13] Varhatis, M. N.; Amdroulakis, G. S.; Lambrinos, J. N., A class of gradient unconstrained minimization algorithms with adaptive stepsize, J. Comput. Appl. Math., 114, 367-386 (2000) · Zbl 0958.65072 [14] Fletcher, R., Low storage methods for unconstrained optimization, Lect. Appl. Math. (AMS), 25, 165-179 (1990) · Zbl 0699.65052 [15] Birgin, E. G.; Martinez, J. M.; Raydan, M., Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim., 10, 1196-1211 (2000) · Zbl 1047.90077 [16] Friedlander, A.; Martinez, J. M.; Molina, B.; Raydan, M., Gradient method with retards and generalizations, SIAM J. Numer. Anal., 36, 275-289 (1999) · Zbl 0940.65032 [17] Magoulas, G. D., A class of gradient unconstrained minimization algorithms with adaptive stepsize, J. Comput. Appl. Math., 114, 367-386 (2000) · Zbl 0958.65072 [18] Glunt, W.; Haydan, T. L.; Raydan, M., Molecular conformations from distance matrices, J. Comput. Chem., 14, 114-120 (1993) [19] Birgin, E. G.; Chambouleyron, I.; Martinez, J. M., Estimation of the optical constants and the thickness of thin films using unconstrained optimization, J. Comput. Phys., 151, 862-880 (1999) · Zbl 1017.74501 [20] Chen, X. D.; Sun, J., Global convergence of a two-parameter family of conjugate gradient methods without line search, J. Computat. Appl. Math., 146, 37-45 (2002) · Zbl 1018.65081 [21] Sun, J.; Zhang, J. P., Global convergence of conjugate gradient methods without line search, Ann. Operat. Res., 103, 161-173 (2001) · Zbl 1014.90071 [22] Shi, Z. J., Convergence of line search methods for unconstrained optimization, Appl. Math. Computat., 157, 393-405 (2004) · Zbl 1072.65087 [23] Shi, Z. J.; Shen, J., A new descent algorithm with curve search rule, Appl. Math. Computat., 161, 753-768 (2005) · Zbl 1069.65065 [24] Nocedal, J.; Stephen, J. W., Numerical Optimization (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0930.65067 [25] Moré, J. J.; Garbow, B. S.; Hillstrom, K. E., Testing unconstrained optimization software, ACM Trans. Math. Software, 7, 17-41 (1981) · Zbl 0454.65049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.