Mohanty, R. K. New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. (English) Zbl 1181.65112 Int. J. Comput. Math. 86, No. 12, 2061-2071 (2009). Summary: New unconditionally stable implicit difference schemes for the numerical solution of multi-dimensional telegraphic equations subject to appropriate initial and Dirichlet boundary conditions are discussed. Alternating direction implicit methods are used to solve two and three space dimensional problems. The resulting system of algebraic equations is solved using a tri-diagonal solver. Numerical results are presented to demonstrate the utility of the proposed methods. Cited in 80 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35L20 Initial-boundary value problems for second-order hyperbolic equations 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65F10 Iterative numerical methods for linear systems 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Keywords:linear hyperbolic equation; telegraphic equation; damped wave equation; ADI method; RMS errors; unconditional stability; alternating direction implicit methods; numerical results PDF BibTeX XML Cite \textit{R. K. Mohanty}, Int. J. Comput. Math. 86, No. 12, 2061--2071 (2009; Zbl 1181.65112) Full Text: DOI References: [1] Bohme G., Non-Newtonian Fluid Mechanics (1987) [2] Bryksenkova N. K., Combust. Explo. Shock Waves 29 pp 333– (1993) [3] DOI: 10.1016/0377-0427(85)90018-4 · Zbl 0579.65073 [4] DOI: 10.1007/BF01135371 [5] DOI: 10.1080/0020716031000112312 · Zbl 1043.65101 [6] DOI: 10.1063/1.369258 [7] DOI: 10.1103/PhysRevE.62.7918 [8] DOI: 10.1137/0110046 · Zbl 0111.29204 [9] DOI: 10.1093/imamat/11.1.105 · Zbl 0259.65085 [10] DOI: 10.1002/num.20003 · Zbl 1062.65086 [11] DOI: 10.1002/num.20073 · Zbl 1160.65329 [12] DOI: 10.1080/00207390210162465 · Zbl 02350371 [13] DOI: 10.1002/num.6 · Zbl 0982.65096 [14] DOI: 10.1002/num.1029 · Zbl 0990.65102 [15] DOI: 10.1016/0020-7225(86)90163-1 · Zbl 0624.76119 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.