zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation. (English) Zbl 1181.65117
The paper deals with the Kuramoto-Tsuzuki equation $$\frac{\partial w}{\partial t}=(1+ic_1)\frac{\partial^2 w}{\partial x^2}+w-(1+ic_2)|w|^2w, \; (x,t)\in (0,1) \times (0,T]$$ with an initial condition and with the homogeneous Neumann boundary conditions. The authors propose an semi-explicit linearized difference scheme of Crank-Nicolson type with the truncation error ${\mathcal O}(h^2+\tau^2).$ It is proved that the scheme is stable and possesses the accuracy order ${\mathcal O}(h^2+\tau^2)$ in the $L_{\infty}$-norm. Numerical examples confirm the theoretical results.

MSC:
65M06Finite difference methods (IVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
65M15Error bounds (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] Tsertsvadze, G. Z.: On the convergence of difference schemes for the Kuramoto--tsuzuki equation and for systems of reaction-diffusion type, Zh. vychisl. Mat. mat. Fiz. 31, 698-707 (1991) · Zbl 0736.65071
[2] Sun, Z. Z.: On tsertsvadze’s difference scheme for the Kuramoto--tsuzuki equation, J. comput. Appl. math. 98, 289-304 (1998) · Zbl 0933.65104 · doi:10.1016/S0377-0427(98)00135-6
[3] Sun, Z. Z.: A linear difference scheme for the Kuramoto--tsuzuki equation, J. comput. Math. 14, 1-7 (1996) · Zbl 0844.65068
[4] Sun, Z. Z.: A generalized box scheme for the Kuramoto--tsuzuki equation, J. southeast univ. 26, 87-92 (1996) · Zbl 0990.65503
[5] Sun, Z. Z.: On L$\infty $convergenc of a linearized difference scheme for the Kuramoto--tsuzuki equation, Nanjin univ. J. math. Biquarterly 14, 5-9 (1997) · Zbl 0911.65076
[6] Ivanauskas, F.: On convergence of difference schemes for nonlinear Schrödinger equations, the Kuramoto--tsuzuki equation, and reaction-diffusion type systems, Liet. mat. Rink. 34, 32-51 (1994) · Zbl 0834.65086 · doi:10.1007/BF02335386
[7] Ivanauskas, F.: On convergence and stability of difference schemes for derivative nonlinear evolution equations, Liet. mat. Rink. 36, 10-20 (1996) · Zbl 0882.65082 · doi:10.1007/BF02473969
[8] Abidi, F.; Ayadi, M.; Omrani, K.: Stability and convergence of difference scheme for nonlinear evolutionary type equations, J. appl. Math. comput. 27, 293-305 (2008) · Zbl 1157.65049 · doi:10.1007/s12190-008-0044-5
[9] Omrani, K.: Convergence of Galerkin approximations for the Kuramoto--tsuzuki equation, Numer. methods partial differential equations 21, No. 5, 961-975 (2005) · Zbl 1083.65086 · doi:10.1002/num.20070
[10] Omrani, K.: Optimal L? error estimates for finite element Galerkin methods for nonlinear evolution equations, J. appl. Math. comput. 26, No. 1-2, 247-262 (2008) · Zbl 1156.65081 · doi:10.1007/s12190-007-0018-z
[11] Q. Xu, Difference method for partial differential equations and applications in image processing, Chinese Academy of Sciences, Ph.D. Thesis, 2008 (in Chinese)
[12] Q. Xu, Q. Chang, Difference Methods for computing the Ginzburg-Landau Equation in two dimensions, Numer. Methods Partial Differential Equations (in press) · Zbl 1218.65089 · doi:10.1002/num.20535
[13] Sun, Z. Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation, Math. comput. 64, 1463-1471 (1995) · Zbl 0847.65056 · doi:10.2307/2153365
[14] Guo, Benyu: The convergence of numerical method for nonlinear Schrödinger equations, J. comput. Math. 4, 121-130 (1986) · Zbl 0598.65092
[15] Zhu, Y.: Implicit difference schemes for the generalized non-linear Schrödinger system, the convergence of numerical method for nonlinear Schrödinger equations, J. comput. Math. 1, No. 2, 116-129 (1983) · Zbl 0549.65088
[16] Zhou, Y.: Application of discrete functional analysis to the finite difference methods, (1990)