×

Approximating time evolution related to Ginzburg-Landau functionals via Sobolev gradient methods in a finite-element setting. (English) Zbl 1181.65124

Summary: Sobolev gradients have previously [the authors, ibid. 228, No. 7, 2566–2571 (2009; Zbl 1166.65348)] been used to approximate the time evolution related to a model A functional in a finite-difference setting in this journal.
Here, a related approach in a finite-element setting is discussed.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1166.65348

Software:

FreeFem++
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Raza, N.; Sial, S.; Siddiqi, S., Sobolev gradient approach for the time evolution related to energy minimization of ginzberg – landau functionals, J. comput. phys., 228, 2566-2571, (2009) · Zbl 1166.65348
[2] Neuberger, J.W., ()
[3] Mahavier, W.T., A numerical method utilizing weighted Sobolev descent to solve singular differential equations, Nonlinear world, 4, 435-455, (1997) · Zbl 0908.65060
[4] C. Beasley, Finite Element Solution to Nonlinear Partial Differential Equations. Ph.D. Thesis, University of North Texas, Denton, TX, 1981.
[5] Sial, S.; Neuberger, J.W.; Lookman, T.; Saxena, A., Energy minimization using Sobolev gradients: application to phase separation and ordering, J. comput. phys., 189, 88-97, (2003) · Zbl 1097.49002
[6] S. Sial, J. Neuberger, T. Lookman, A. Saxena, energy minimization using Sobolev gradients finite-element setting, in: Chaudhary, Bhatti (Eds.), Proceedings of the World Conference on 21st Century Mathematics, Lahore, Pakistan, March 2005. · Zbl 1097.49002
[7] Sial, S., Sobolev gradient algorithm for minimum energy states of s-wave superconductors: finite-element setting, Supercond. sci. technol., 18, 675-677, (2005)
[8] Karatson, J.; Loczi, L., Sobolev gradient preconditioning for the electrostatic potential equation, Comput. math. appl., 50, 1093-1104, (2005) · Zbl 1098.65113
[9] Karatson, J.; Farago, I., Preconditioning operators and Sobolev gradients for nonlinear elliptic problems, Comput. math. appl., 50, 1077-1092, (2005) · Zbl 1118.65122
[10] Karatson, J., Constructive Sobolev gradient preconditioning for semilinear elliptic systems, Electron. J. diff. eq., 75, 1-26, (2004) · Zbl 1109.65308
[11] Garcia-Ripoll, J.; Konotop, V.; Malomed, B.; Perez-Garcia, V., A quasi-local gross – pitaevskii equation for attractive bose – einstein condensates, Math. comput. simulat., 62, 21-30, (2003) · Zbl 1034.35126
[12] Brown, B.; Jais, M.; Knowles, I., A variational approach to an elastic inverse problem, Inverse probl., 21, 1953-1973, (2005) · Zbl 1274.35407
[13] Knowles, I.; Yan, A., On the recovery of transport parameters in groundwater modelling, J. comput. appl. math., 171, 277-290, (2004) · Zbl 1044.86009
[14] Renka, R.J.; Neuberger, J.W., Sobolev gradients: introduction, applications, Contemp. math., 257, 85-99, (2004) · Zbl 1064.35006
[15] Richardson, W.B., Sobolev preconditioning for the poisson – boltzman equation, Comput. method appl. mech. eng., 181, 425-436, (2000) · Zbl 0960.82035
[16] Mujeeb, D.; Neuberger, J.W.; Sial, S., Recursive forms of Sobolev gradient for odes on long intervals, Int. J. comput. math., 87, 1727-1740, (2008) · Zbl 1154.65061
[17] R.J. Renka, Geometric curve modeling with Sobolev gradients, 2006, <ww.cse.unt.edu/renka/papers/curves.pdf>.
[18] Nittka, R.; Sauter, M., Sobolev gradients for differential algebraic equations, J. diff. eq., 42, 1-31, (2008) · Zbl 1165.65373
[19] Hohenberg, P.C.; Halperin, B.I., Theory of dynamic critical phenomena, Rev. mod. phys., 49, 435-479, (1977)
[20] Rogers, T.M.; Elder, K.E.; Desai, R.C., Numerical study of the late stages of spinodal decomposition, Phys. rev. B, 37, 9638-9649, (1988)
[21] Cahn, J.W.; Hilliard, J.E., Free energy of a nonuniform system I. interfacial free energy, J. chem. phys., 28, 258-267, (1958)
[22] Nishimori, H.; Onuki, A., Pattern formation in phase-separating alloys with cubic symmetry, Phys. rev. B, 42, 980-983, (1990)
[23] Lu, W.; Suo, Z., Symmetry breaking in self-assembled monolayers on solid surfaces: anisotropic surface stress, Phys. rev. B, 65, 085401, (2002)
[24] Courant, R.; Friedrichs, K.O.; Lewy, H., Uber die partiellen differenzengleichungen der mathematisches physik, Math. ann., 100, 32-74, (1928) · JFM 54.0486.01
[25] F. Hecht, O. Pironneau, K. Ohtsuka, FreeFem++Manual, <www.freefem.org>.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.