zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Portfolio selection with uncertain exit time: a robust CVaR approach. (English) Zbl 1181.91292
Summary: We explore the portfolio selection problem involving an uncertain time of eventual exit. To deal with this uncertainty, the worst-case CVaR methodology is adopted in the case where no or only partial information on the exit time is available, and the corresponding problems are integrated into linear programs which can be efficiently solved. Moreover, we present a method for specifying the uncertain information on the distribution of the exit time associated with exogenous and endogenous incentives. Numerical experiments with real market data and Monte Carlo simulation show the usefulness of the proposed model.

91G10Portfolio theory
91G60Numerical methods in mathematical finance
90C05Linear programming
65C05Monte Carlo methods
Full Text: DOI
[1] Acerbi, C.; Tasche, D.: On the coherence of expected shortfall, Journal of banking and finance 26, 1487-1503 (2002)
[2] Alexander, G. J.; Baptista, A. M.: Economic implication of using a mean -- var model for portfolio selection: a comparison with mean -- variance analysis, Journal of economic dynamics and control 26, 1159-1193 (2002) · Zbl 1131.91325 · doi:10.1016/S0165-1889(01)00041-0
[3] Artzner, P.; Delbaen, F.; Eber, J. M.; Heath, D.: Coherence measures of risk, Mathematical finance 9, 203-228 (1999) · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[4] Blanchet-Scalliet, C.; El Karoui, N.; Martellini, L.: Dynamic asset pricing theory with uncertain time-horizon, Journal of economic dynamics and control 29, 1737-1764 (2005) · Zbl 1198.91078 · doi:10.1016/j.jedc.2004.10.002
[5] Blanchet-Scalliet, C., El Karoui, N., Jeanblanc, M., Martellini, L., 2005b. Optimal investment and consumption decisions when time-horizon is uncertain. Preprint. · Zbl 1153.91018
[6] Costa, O. L.; Paiva, A. C.: Robust portfolio selection using linear-matrix inequality, Journal of economic dynamics and control 26, 889-909 (2002) · Zbl 0996.91061 · doi:10.1016/S0165-1889(00)00086-5
[7] El Ghaoui, L.; Oks, M.; Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach, Operations research 51, 543-556 (2003) · Zbl 1165.91397 · doi:10.1287/opre.51.4.543.16101
[8] Erdoğan, E., Goldfarb, D., Iyengar, G., 2006. Robust active portfolio management. CORC Technical Report.
[9] Fabozzi, F. J.; Gupta, F.; Markowitz, H. M.: The legacy of modern portfolio theory, Journal of investing 11, No. 3, 7-22 (2002)
[10] Fabozzi, F. J.; Kolm, P. N.; Pachamanova, D.; Focardi, S. M.: Robust portfolio optimization and management, (2007)
[11] Goldfarb, D.; Iyengar, G.: Robust portfolio selection problems, Mathematics of operations research 28, 1-38 (2003) · Zbl 1082.90082 · doi:10.1287/moor.
[12] Hakansson, N.: Optimal investment and consumption strategies under risk, an uncertain lifetime and insurance, International economic review 10, No. 3, 443-466 (1969) · Zbl 0195.21902 · doi:10.2307/2525655
[13] Hull, J. C.: Options, futures, and other derivatives, (1999) · Zbl 1087.91025
[14] Karatzas, I.; Wang, H.: Utility maximization with discretionary stopping, SIAM journal of control and optimization 39, 306-329 (2000) · Zbl 0963.93079 · doi:10.1137/S0363012998346323
[15] Liu, H.; Loewenstein, H.: Optimal portfolio selection with transaction costs and finite horizon, Review of financial studies 15, No. 3, 805-835 (2002)
[16] Lobo, M.S., Boyd, S., 2000. The worst-case risk of a portfolio, Technical Report, \langle http://faculty.fuqua.kuke.edu/∼mlobo/bio/research/risk-bnd.pdf\rangle .
[17] Markowitz, H. M.: Portfolio selection, Journal of finance 7, 77-91 (1952)
[18] Markowitz, H. M.: Portfolio selection: efficient diversification of investment, (1959)
[19] Martellini, L.; Uros&breve, B.; Ević: Static mean -- variance analysis with uncertain time horizon, Management science 52, No. 6, 955-964 (2006)
[20] Merton, R. C.: Optimal consumption and portfolio rules in a continuous-time model, Journal of economic theory 3, 373-413 (1971) · Zbl 1011.91502
[21] Mulvey, J.; Vanderbei, R. J.; Zenios, S. A.: Robust optimization of large scale systems, Operations research 43, No. 2, 264-281 (1995) · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[22] Odean, T.: Are investors reluctant to realize their losses, Journal of finance 53, 1775-1798 (1998)
[23] Pflug, G.: Some remarks on the value-at-risk and the conditional value-at-risk, Probabilistic constrained optimization (2000) · Zbl 0994.91031
[24] Richard, S. F.: Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model, Journal of financial economics 2, 187-203 (1975)
[25] Rockafellar, R. T.; Uryasev, S.: Optimization of conditional value-at-risk, Journal of risk 2, 21-41 (2000)
[26] Rockafellar, R. T.; Uryasev, S.: Conditional value-at-risk for general loss distribution, Journal of banking and finance 26, 1443-1471 (2002)
[27] Shefrin, H.; Statman, M.: The disposition to sell winners too early and ride losers too long: theory and evidence, Journal of finance 40, 777-792 (1985)
[28] Sturm, J.: Using sedumi, a Matlab toolbox for optimization over symmetric cones, (2001) · Zbl 0973.90526
[29] Vanderbei, R. J.: Linear programming: foundations and extensions, (1996) · Zbl 0874.90133
[30] Yaari, M.: Uncertain lifetime, life insurance and the theory of the consumer, Review of economic studies 2, 137-150 (1965)
[31] Zhu, S.S., Fukushima, M., 2005. Worst-case conditional value-at-risk with application to robust portfolio management. Technical Report 2005-6, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, \langle http://www.amp.i.kyoto-u.ac.jp/tecrep/\rangle . · Zbl 1233.91254