Huillet, Thierry; Möhle, Martin Duality and asymptotics for a class of nonneutral discrete Moran models. (English) Zbl 1181.92067 J. Appl. Probab. 46, No. 3, 866-893 (2009). A multitype (\(K\)-sex) Moran population model is introduced which coincides with the standard haploid Moran model when \(K=1\) and with Kämmerle’s two-sex Moran model if \(K=2\). A duality result is established for the “forward” Markov chain \(X_i\) which counts the descendants in the \(i\)-th generation and the “backward” ancestral chain \(Y_i\) which counts the ancestral mating units. Weak convergence of normalized \(Y\) to an Ornstein-Uhlenbeck process is established as the size of population tends to infinity. Asymptotics of the mean and variance of \(Y\) are given. The extinction probabilities of the forward chain \(X\) and the stationary distribution of \(Y\) are investigated. Reviewer: R. E. Maiboroda (Kyïv) Cited in 4 Documents MSC: 92D15 Problems related to evolution 60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60F05 Central limit and other weak theorems 92D10 Genetics and epigenetics Keywords:multitype Moran model; ancestral process; descendants process; duality; Ornstein-Uhlenbeck process PDFBibTeX XMLCite \textit{T. Huillet} and \textit{M. Möhle}, J. Appl. Probab. 46, No. 3, 866--893 (2009; Zbl 1181.92067) Full Text: DOI References: [1] Alkemper, R. and Hutzenthaler, M. (2007). Graphical representation of some duality relations in stochastic population models. Electron. Commun. Prob. 12 , 206–220. · Zbl 1129.60093 [2] Athreya, S. R. and Swart, J. M. (2005). Branching-coalescing particle systems. Prob. Theory Relat. Fields 131 , 376–414. · Zbl 1071.60094 · doi:10.1007/s00440-004-0377-4 [3] Bender, E. A. (1973). Central and local limit theorems applied to asymptotic enumeration. J. Combinatorial Theory A 15 , 91–111. · Zbl 0242.05006 · doi:10.1016/0097-3165(73)90038-1 [4] Berg, C., Mateu, J. and Porcu, E. (2008). The Dagum family of isotropic correlation functions. Bernoulli 14 , 1134–1149. · Zbl 1158.60350 · doi:10.3150/08-BEJ139 [5] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126 , 261–288. · Zbl 1023.92018 · doi:10.1007/s00440-003-0264-4 [6] Blythe, R. A. (2007). The propagation of a cultural or biological trait by neutral genetic drift in a subdivided population. Theoret. Pop. Biol. 71 , 454–472. · Zbl 1122.92052 · doi:10.1016/j.tpb.2007.01.006 [7] Coop, C. and Griffiths, R. C. (2004). Ancestral inference on gene trees under selection. Theoret. Pop. Biol. 66 , 219–232. [8] Diaconis, P. and Fill, J. A. (1990). Strong stationary times via a new form of duality. Ann. Prob. 18 , 1483–1522. · Zbl 0723.60083 · doi:10.1214/aop/1176990628 [9] Donnelly, P. (1984). The transient behavior of the Moran model in population genetics. Math. Proc. Camb. Phil. Soc. 95 , 349–358. · Zbl 0533.92012 · doi:10.1017/S0305004100061624 [10] Donnelly, P. (1985). Dual processes and an invariance result for exchangeable models in population genetics. J. Math. Biol. 23 , 103–118. · Zbl 0596.92014 · doi:10.1007/BF00276560 [11] Donnelly, P. (1986). Dual processes in population genetics. In Stochastic Spatial Processes (Lecture Notes Math. 1212 ), Springer, Berlin, pp. 94–105. · Zbl 0606.92017 · doi:10.1007/BFb0076240 [12] Donnelly, P. and Rodrigues, E. R. (2000). Convergence to stationarity in the Moran model. J. Appl. Prob. 37 , 705–717. · Zbl 0968.60079 · doi:10.1239/jap/1014842830 [13] Ethier, S. N. and Krone, S. M. (1995). Comparing Fleming–Viot and Dawson–Watanabe processes. Stoch. Process. Appl. 60 , 171–190. · Zbl 0845.60042 · doi:10.1016/0304-4149(95)00056-9 [14] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes . John Wiley, New York. · Zbl 0592.60049 [15] Ewens, W. J. (2004). Mathematical Population Genetics. I , 2nd edn. Springer, New York. · Zbl 1060.92046 [16] Feller, W. (1971). An Introduction to Probability Theory and Its Applications , Vol. II, 2nd edn. John Wiley, New York. · Zbl 0219.60003 [17] Griffeath, D. (1993). Frank Spitzer’s pioneering work on interacting particle systems. Ann. Prob. 21 , 608–621. · Zbl 0782.60077 · doi:10.1214/aop/1176989258 [18] Huillet, T. (2009). A duality approach to the genealogies of discrete non-neutral Wright–Fisher models. J. Prob. Statist. 2009 , 714701, 22 pp. · Zbl 1201.92048 · doi:10.1155/2009/714701 [19] Kämmerle, K. (1989). Looking forwards and backwards in a bisexual Moran model. J. Appl. Prob. 26 , 880–885. JSTOR: · Zbl 0688.92007 · doi:10.2307/3214393 [20] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13 , 235–248. · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4 [21] Liggett, T. M. (1985). Interacting Particles Systems . Springer, New York. · Zbl 0559.60078 [22] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes . Springer, Berlin. · Zbl 0949.60006 [23] Moran, P. A. P. (1958). Random processes in genetics. Proc. Camb. Phil. Soc. 54 , 60–71. · Zbl 0091.15701 · doi:10.1017/S0305004100033193 [24] Möhle, M. (1994). Forward and backward processes in bisexual models with fixed population sizes. J. Appl. Prob. 31 , 309–332. JSTOR: · Zbl 0812.92017 · doi:10.2307/3215026 [25] Möhle, M. (1999). The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5 , 761–777. · Zbl 0942.92020 · doi:10.2307/3318443 [26] Möhle, M. (2001). Forward and backward diffusion approximations for haploid exchangeable population models. Stoch. Process. Appl. 95 , 133–149. · Zbl 1056.92039 · doi:10.1016/S0304-4149(01)00093-X [27] Siegmund, D. (1976). The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. Ann. Prob. 4 , 914–924. · Zbl 0364.60109 · doi:10.1214/aop/1176995936 [28] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 , 246–290. · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4 [29] Sudbury, A. and Lloyd, P. (1995). Quantum operators in classical probability theory. II. The concept of duality in interacting particle systems. Ann. Prob. 23 , 1816–1830. · Zbl 0853.60079 · doi:10.1214/aop/1176987804 [30] Wang, Y. and Yeh, Y.-N. (2007). Log-concavity and LC-positivity. J. Combinatorial Theory A 114 , 195–210. · Zbl 1109.11019 · doi:10.1016/j.jcta.2006.02.001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.