×

Friable integers: Turán-Kubilius inequality and applications. (Entiers friables: inégalité de Turán-Kubilius et applications.) (French) Zbl 1182.11045

Let \(P(n)\) be the largest prime divisor of natural number \(n>1\), \(P(1)=1\), and \(S(x,y)=\left\{n\leq x: P(n)\leq y \right\}\) be the set of \(y\)-friable positive integers not exceeding \(x\).
A bouquet of known classical problems of number theory is solved for friable positive integers. The analogue of the Turán-Kubilius inequality is proved on \(S(x,y)\) for additive complex function. The asymptotic formulas are obtained for the best possible constant in the Turán-Kubilius inequality. The analogue of the Erdős-Wintner theorem is presented. The generalization of the Daboussi theorem [see H. Daboussi, Prog. Math. 85, 111–118 (1990; Zbl 0719.11059)] for exponential sums is obtained. Finally, an interesting result on the prime divisors of friable integers is proved.
The Turán-Kubilius inequality on \(S(x,y)\) is the main result of the present paper, because the other results are obtained essentially using this inequality. It should be noted that one of the obtained asymptotic formulas for the constant in the Turán-Kubilius inequality revises A. Hildebrand’s results [see Math. Z. 183, 145–170 (1983; Zbl 0493.10049)].

MSC:

11N64 Other results on the distribution of values or the characterization of arithmetic functions
11N37 Asymptotic results on arithmetic functions
11L07 Estimates on exponential sums
Full Text: DOI

References:

[1] Alladi, K.: The Turán-Kubilius inequality for integers without large prime factors. J. Reine Angew. Math. 335, 180-196 (1982) · Zbl 0483.10050 · doi:10.1515/crll.1982.335.180
[2] Biró, A., Szamuely, T.: A Turán?Kubilius inequality with multiplicative weights. Acta Math. Hung. 70, 39-56 (1996) · Zbl 0866.11047 · doi:10.1007/BF00113912
[3] de la Bretèche, R.: Sommes d?exponentielles et entiers sans grand facteur premier. Proc. Lond. Math. Soc., III. Ser. 77, 39-78 (1998) · Zbl 0893.11039 · doi:10.1112/S0024611598000409
[4] de la Bretèche, R., Tenenbaum, G.: Sur les lois locales de la répartition du k-ième diviseur d?un entier. Proc. Lond. Math. Soc., III. Ser. 84, 289-323 (2002) · Zbl 1015.11047 · doi:10.1112/plms/84.2.289
[5] de la Bretèche, R., Tenenbaum, G.: Propriétés statistiques des entiers friables. Ramanujan J., à paraître · Zbl 1152.11040
[6] Daboussi, H.: Fonctions multiplicatives presque périodiques B. Astérisque 24-25, 321-324 (1975) · Zbl 0306.10042
[7] Daboussi, H.: On some exponential sums. In: Analytic number theory, ed. by B.C. Berndt, H.G. Diamond, H. Halberstam, A. Hildebrand (Allerton Park 1989). Progr. Math. 85, 111-118. Boston, MA: Birkhäuser 1990
[8] Daboussi, H., Delange, H.: On multiplicative arithmetical functions whose modulus does not exceed one. J. Lond. Math. Soc., II. Ser. 26, 245-264 (1982) · Zbl 0499.10052 · doi:10.1112/jlms/s2-26.2.245
[9] Dupain, Y., Hall, R.R., Tenenbaum, G.: Sur l?équirépartition modulo 1 de certaines fonctions de diviseurs. J. Lond. Math. Soc., II. Ser. 26, 397-411 (1982) · Zbl 0504.10029 · doi:10.1112/jlms/s2-26.3.397
[10] Elliott, P.D.T.A.: Probabilistic number theory: mean value theorems. Grundlehren Math. Wiss. 239. New York, Berlin, Heidelberg: Springer 1979 · Zbl 0431.10029
[11] Elliott, P.D.T.A.: Probabilistic number theory: central limit theorems. Grundlehren Math. Wiss. 240. New York, Berlin, Heidelberg: Springer 1980 · Zbl 0431.10030
[12] Fouvry, E., Tenenbaum, G.: Entiers sans grand facteur premier en progressions arithmétiques. Proc. Lond. Math. Soc., III. Ser. 63, 449-494 (1991) · Zbl 0745.11042 · doi:10.1112/plms/s3-63.3.449
[13] Fouvry, E., Tenenbaum, G.: Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques. Proc. Lond. Math. Soc., III. Ser. 72, 481-514 (1996) · Zbl 0858.11049 · doi:10.1112/plms/s3-72.3.481
[14] Hall, R.R., Tenenbaum, G.: Divisors. Cambridge Tracts in Mathematics 90. Cambridge: Cambridge University Press 1988
[15] Hildebrand, A.: An asymptotic formula for the variance of an additive function. Math. Z. 183, 145-170 (1983) · doi:10.1007/BF01214818
[16] Hildebrand, A.: On the number of positive integers ?x and free of prime factors >y. J. Number Theory 22, 265-290 (1986) · Zbl 0575.10038 · doi:10.1016/0022-314X(86)90013-2
[17] Hildebrand, A.: On the number of prime factors of integers without large prime divisors. J. Number Theory 25, 81-106 (1987) · Zbl 0621.10028 · doi:10.1016/0022-314X(87)90017-5
[18] Hildebrand, A., Tenenbaum, G.: On integers free of large prime factors, Trans. Am. Math. Soc. 296, 265-290 (1986) · Zbl 0601.10028 · doi:10.1090/S0002-9947-1986-0837811-1
[19] Hildebrand, A., Tenenbaum, G.: On a class of differential?difference equations arising in number theory. J. Anal. Math. 61, 145-179 (1993) · Zbl 0797.11072 · doi:10.1007/BF02788841
[20] Ivi?, A., Tenenbaum, G.: Local densities over integers free of large prime factors. Q. J. Math., Oxf., II. Ser. 37, 401-417 (1986) · Zbl 0604.10024 · doi:10.1093/qmath/37.4.401
[21] Kubilius, J.: Probabilistic methods in the theory of numbers (en russe). Usp. Mat. Nauk 11, 31-66 (1956); Am. Math. Soc. Transl., II. Ser. 19, 47-85 (1962) · Zbl 0071.04301
[22] Kubilius, J.: Probabilistic methods in the theory of numbers. Transl. Math. Monogr. 11, XVIII, 182?pp. Providence: Am. Math. Soc. 1964 · Zbl 0133.30203
[23] Kubilius, J.: Estimation of the central moment for strongly additive arithmetic functions (en russe, résumés en anglais et lituanien). Litovsk. Mat. Sb. 23(1), 122-133 (1983)
[24] Kubilius, J.: Estimate of the second central moment for any additive arithmetic functions (en russe, résumés en anglais et lituanien). Litovsk. Mat. Sb. 23(2), 110-117 (1983)
[25] Rényi, A.: A new proof of a theorem of Delange. Publ. Math. Debrecen 12, 323-329 (1965) · Zbl 0139.27003
[26] Shapiro, H.N.: On the Erd?s?Wintner Theorem of Probabilistic Number Theory. Commun. Pure Appl. Math. 36, 665-678 (1983) · Zbl 0515.10045 · doi:10.1002/cpa.3160360507
[27] Smida, H.: Sur les puissances de convolution de la fonction de Dickman. Acta Arith. 59, 123-143 (1991) · Zbl 0881.11069
[28] Stein, C.M.: On the Turán?Kubilius inequality. Technical report no. 220. Stanford: Stanford University 1984
[29] Tenenbaum, G.: Cribler les entiers sans grand facteur premier. In: Theory and applications of numbers without large prime factors, ed. by R.C. Vaughan. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 345, 377-384 (1993) · Zbl 0795.11042
[30] Tenenbaum, G.: Introduction à la théorie analytique et probabiliste des nombres. Cours Spéc., Paris, no. 1, xv?+?457?pp. Société Mathématique de France 1995
[31] Tenenbaum, G.: Crible d?Ératosthène et modèle de Kubilius. In: Number Theory in Progress, ed. by K. Gy?ry, H. Iwaniec, J. Urbanowicz. Proceedings of the conference in honor of Andrzej Schinzel, Zakopane, Poland 1997, pp. 1099-1129. Berlin, New York: de Gruyter 1999 · Zbl 0936.11052
[32] Tenenbaum, G.: Trois conférences sur la théorie analytique des nombres. Journées états de la recherche, Bordeaux, 7-9 décembre 2000 http://www.iecn.u-nancy.fr/?tenenb/PUBLIC/Prepublications_et_publications/JER.pdf
[33] Turán, P.: On a theorem of Hardy and Ramanujan. J. Lond. Math. Soc. 9, 274-276 (1934) · Zbl 0010.10401 · doi:10.1112/jlms/s1-9.4.274
[34] Turán, P.: Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan. J. Lond. Math. Soc. 11, 125-133 (1936) · Zbl 0014.00901 · doi:10.1112/jlms/s1-11.2.125
[35] Xuan, T.Z.: The Turán-Kubilius inequality for integers free of large prime factors. J. Number Theory 43, 82-87 (1993) · Zbl 0772.11035 · doi:10.1006/jnth.1993.1009
[36] Xuan, T.Z.: The Turán-Kubilius inequality for integers free of large prime factors (II). Acta Arith. 65, 329-352 (1993) · Zbl 0786.11057
[37] Xuan, T.Z.: Integers free with no large prime factors. Acta Arith. 69, 303-327 (1995) · Zbl 0819.11035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.