zbMATH — the first resource for mathematics

Solvability of matrix Riccati equations. (English. Russian original) Zbl 1182.15009
J. Math. Sci., New York 163, No. 2, 176-187 (2009); translation from Tr. Semin. Im. I. G. Petrovskogo 27, No. 2, 281-300 (2009).
Summary: The paper is aimed at studying solvability conditions for the quadratic matrix Riccati equation that arises in connection with the Chapman-Enskog projection for the Cauchy problem and the mixed problem for moment approximations of kinetic equations. The structure of the matrix equation allows for the formulation of necessary and sufficient conditions for the existence of solutions in terms of eigenvectors and associated vectors of the coefficient matrix.

15A24 Matrix equations and identities
35L03 Initial value problems for first-order hyperbolic equations
Full Text: DOI
[1] Chen Gui-Qiang, C. D. Levermore, and Tai-Ping Luui, ”Hyperbolic conservation laws with stiff relaxation terms and entropy,” Commun. Pure Appl. Math., 47, 787–830 (1994). · Zbl 0806.35112 · doi:10.1002/cpa.3160470602
[2] V. A. Palin and E. V. Radkevich, ”Navier–Stokes approximation and Chapman–Enskog projection problems for kinetic equations,” Tr. Semin. Petrovskogo, 25, 184–225 (2006). · Zbl 1115.35102
[3] S. I. Gelfand, ”On the number of solutions of a quadratic equation,” in: GLOBUS, Mathematics Seminar, Vol. 1 [in Russian], Moscow Center of Continuous Mathematical Education, Moscow (2004), pp. 124–133.
[4] V. V. Kozlov, ”Restrictions of quadratic forms to Lagrangian planes, quadratic matrix equations, and gyroscopic stabilization,” Funkts. Anal. Prilozh., 39, 1–14 (2005). · Zbl 1087.41027 · doi:10.1007/s10688-005-0012-x
[5] Lu Tongxing, ”Solution of the matrix equation AX XB = C,” Computing, 37, 351–355 (1986). · Zbl 0597.65035 · doi:10.1007/BF02251092
[6] V. M. Prokip, ”On the solvability of the Riccati matrix algebraic equation,” Ukr. Math. J., 46, No. 11, 1763–1766 (1994). · Zbl 0963.93521 · doi:10.1007/BF01058897
[7] G. I. Shurbet, T. O. Lewis, and T. L. Boullion, ”Quadratic matrix equations,” Ohio J. Sci., 74, No. 5, 273–277 (1974).
[8] W. Dreyer and H. Struchtrup, ”Heat pulse experiments revisted,” Contin. Mech. Thermodyn., 5, 3–50 (1993). · doi:10.1007/BF01135371
[9] C. D. Levermore, ”Moment closure hierarchies for kinetic theories,” J. Stat. Phys., 83, 1021–1065 (1996). · Zbl 1081.82619 · doi:10.1007/BF02179552
[10] E. V. Radkevich, ”Chapman–Enskog projections and Navier–Stokes approximation problems,” Tr. MIAN Steklova, 250, 219–225 (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.