×

zbMATH — the first resource for mathematics

On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis. (English) Zbl 1182.30081
The first-order differential operator (called Dirac operator) \[ \partial_{\underline X}= \sum^n_{j=1} e_j\partial_{X_j} \] and the so-called twisted Dirac operator \[ \partial_{\underline X}= \sum^n_{j=1} (e_j\partial_{y_j}- e_{n+j}\partial_{x_j}) \] are simultaneously considered within the theory of Hermitean Clifford analysis. Hermitean monogenic functions are introduced as common null functions of the Dirac operator and the twisted Dirac operator. In this very general setting, Clifford-Stokes theorems and Hermitean Cauchy-Pompeiu formulae are proved. For spinor valued functions, a Martinelli-Bochner formula for holomorphic functions of several complex variables can be deduced from the Hermitean Cauchy integral formula.

MSC:
30G35 Functions of hypercomplex variables and generalized variables
32A26 Integral representations, constructed kernels (e.g., Cauchy, Fantappiè-type kernels)
46F10 Operations with distributions and generalized functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Abreu Blaya, J. Bory Reyes, F. Brackx, B. De Knock, H. De Schepper, D. Pena Pena and F. Sommen. Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces. Bound. Value Probl., 2009 (2009), ID 425256. · Zbl 1180.30052
[2] R. Abreu Blaya, J. Bory Reyes, D. Pena Penaand F. Sommen. Aboundaryvalue problem for Hermitian monogenic functions. Bound. Value Probl., 2008 (2008), ID 385874.
[3] F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček. Fundaments of Hermitean Clifford Analysis. Part I: Complex structure. Compl. Anal. Oper. Theory, 1(3) (2007), 341–365. · Zbl 1131.30019
[4] F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček, Fundaments of Hermitean Clifford Analysis. Part II: Splitting of h-monogenic equations. Complex Var. Elliptic Eq., 52(10–11) (2007), 1063–1079.
[5] F. Brackx, B. De Knock, H. De Schepper, A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Applic., 344(2) (2008), 1068–1078. · Zbl 1148.44004
[6] F. Brackx, R. Delanghe and F. Sommen. Clifford Analysis, Pitman Publishers, Boston-London-Melbourne (1982). · Zbl 0529.30001
[7] F. Brackx, H. De Schepper and F. Sommen. The Hermitian Clifford analysis toolbox. Appl. Clifford Algebras, 18(3–4) (2008), 451–487. · Zbl 1177.30064
[8] R. Delanghe. On Some Properties of the Hilbert Transform in Euclidean Space. Bull. Belg. Math. Soc. – Simon Stevin, 11 (2004), 163–180. · Zbl 1073.30037
[9] R. Delanghe, F. Sommen and V. Souček. Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers, Dordrecht (1992). · Zbl 0747.53001
[10] D. Eelbode, Zonal Hermitean monogenic functions. In: Y. Imayoshi, Y. Komori, M. Nishio and K. Sakan (eds. ), Complex analysis and its applications, OCAMI Stud., 2, Osaka Munic. Univ. Press, Osaka, 2007, 163–168. · Zbl 1152.30330
[11] J. Gilbert and M. Murray. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991). · Zbl 0733.43001
[12] K. Guerlebeck and W. Sproessig. Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1998). · Zbl 1089.35018
[13] S. Krantz. Function theory of several complex variables, 2nd edition, Wadsworth & Brooks/Cole, Pacific Grove (1992). · Zbl 0776.32001
[14] A. Kytmanov, The Bochner-Martinelli integral and its applications. Birkhaüser, Basel-Boston-Berlin (1995). · Zbl 0834.32001
[15] R. Rocha-Chavez, M. Shapiro and F. Sommen. Integral theorems for functions and differential forms in \(\mathbb{C}\)m. Research Notes in Math., 428, Chapman & Hall/CRC, New York (2002). · Zbl 0991.32002
[16] J. Ryan, ComplexifiedCliffordanalysis. Complex Variables: Theory & Application, 1 (1982), 119–149.
[17] I. Sabadini and F. Sommen. Hermitian Clifford analysis and resolutions. Math. Meth. Appl. Sci., 25(16–18) (2002), 1395–1414. · Zbl 1013.30033
[18] F. Sommen and D. Peña Peña. A Martinelli-Bochner formula for the Hermitian Dirac equation. Math. Meth. Appl. Sci., 30(9) (2007), 1049–1055. · Zbl 1117.30040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.