×

Asymptotic boundary value problems for second-order differential systems. (English) Zbl 1182.34038

Using continuation principle in Fréchet spaces the localization of solutions of vector second-order boundary value problems on noncompact intervals in given sets is established. The results are illustrated by two interesting examples.

MSC:

34B40 Boundary value problems on infinite intervals for ordinary differential equations
34A60 Ordinary differential inclusions
34B15 Nonlinear boundary value problems for ordinary differential equations
47H04 Set-valued operators
47H11 Degree theory for nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kunze, M., ()
[2] Monteiro Marques, M.D.P., Differential inclusions in nonsmooth mechanical problems (shocks and dry friction), (1993), Birkhäuser Basel · Zbl 0802.73003
[3] Agarwal, R.P.; O’Regan, D., Infinite interval problems for differential, () · Zbl 1141.34313
[4] Alonso, J.M.; Mawhin, J.; Ortega, R., Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation, J. math. pures appl., 78, 49-63, (1999) · Zbl 0927.34048
[5] Bianconi, B.; Papalini, F., Non-autonomous boundary value problems on the real line, Discrete. contin. dyn. syst., 15, 3, 759-776, (2006) · Zbl 1132.34026
[6] Guseinov, G.Sh.; Yaslan, I., Boundary value problems for second order nonlinear differential equations on infinite intervals, J. math. anal. appl., 290, 620-638, (2004) · Zbl 1054.34045
[7] Herzog, G., On bounded solutions of second order systems, Demonstratio. math., 39, 4, 793-801, (2006) · Zbl 1114.34032
[8] Kryszewski, W., An application of A-mapping theory to boundary value problems for ordinary differential equations, Nonlinear anal. TMA, 15, 8, 697-717, (1990) · Zbl 0725.34023
[9] Mawhin, J., Bounded solutions of nonlinear ordinary differential equations, (), 121-147 · Zbl 0886.34010
[10] Andres, J., Almost-periodic and bounded solutions of Carathéodory differential inclusions, Differential integral equations, 12, 6, 887-912, (1999) · Zbl 1017.34011
[11] Andres, J., (), 1-101
[12] Andres, J.; Gabor, G.; Górniewicz, L., Boundary value problems on infinite intervals, Trans. amer. math. soc., 351, 4861-4903, (1999) · Zbl 0936.34023
[13] Andres, J.; Górniewicz, L., Topological fixed point principles for boundary value problems, () · Zbl 1118.47051
[14] Cecchi, M.; Furi, M.; Marini, M., About the solvability of ordinary differential equations with asymptotic boundary conditions, Boll. unione mat. ital. (VI), 4-C, 1, 329-345, (1985) · Zbl 0587.34013
[15] Cecchi, M.; Furi, M.; Marini, M., On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals, Nonlinear anal. TMA, 9, 2, 171-180, (1985) · Zbl 0563.34018
[16] Furi, M.; Pera, P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. polon. math., 47, 331-346, (1987) · Zbl 0656.47052
[17] Furi, M.; Pera, P., On the fixed point index in locally convex spaces, Proc. roy. soc. Edinburgh, 106, 161-168, (1987) · Zbl 0641.47059
[18] Agarwal, R.P.; O’Regan, D., Fixed point theory for admissible multimaps defined on closed subsets of Fréchet spaces, J. math. anal. appl., 277, 438-445, (2003) · Zbl 1022.47037
[19] Agarwal, R.P.; O’Regan, D.; Sahu, D.R., Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory, Discussiones math., diff. inclusions control optim., 27, 399-409, (2007) · Zbl 1158.47040
[20] Agarwal, R.P.; Frigon, M.; O’Regan, D., (), 75-88
[21] Frigon, M.; O’Regan, D., Fixed points of cone-compressing and cone-extending operators in Fréchet spaces, Bull. London math. soc., 35, 5, 672-680, (2003) · Zbl 1041.47040
[22] O’Regan, D., An essential map approach for multimaps defined on closed subsets of Fréchet spaces, Appl. anal., 85, 503-515, (2006) · Zbl 1106.47042
[23] Górniewicz, L., Topological fixed point theory of multivalued mappings, (2006), Springer Berlin · Zbl 1107.55001
[24] Appell, J.; De Pascale, E.; Thái, N.H.; Zabreiko, P.P., Multi-valued superpositions, Dissertationes math., 345, (1995), PWN, Warsaw · Zbl 0855.47037
[25] Aubin, J.-P.; Cellina, A., Differential inclusions, (1984), Springer Berlin
[26] Vrabie, I.I., Compactness methods for nonlinear evolutions, (1990), Longman House Burn Mill, Harlow · Zbl 0842.47040
[27] Hu, S.; Papageorgiou, N.S., Handbook of multivalued analysis, vol. I: theory, (1997), Kluwer Dordrecht · Zbl 0887.47001
[28] Kurzweil, J., Ordinary differential equations, (1986), Elsevier & SNTL Dordrecht & Prag · Zbl 0619.26006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.