×

Approximate solution for a variable-coefficient semilinear heat equation with nonlocal boundary conditions. (English) Zbl 1182.35143

Summary: This paper develops an iterative algorithm for the solution to a variable-coefficient semilinear heat equation with nonlocal boundary conditions in the reproducing space. It is proved that the approximate sequence \(u_n(x, t)\) converges to the exact solution \(u(x, t)\). Moreover, the partial derivatives of \(u_n(x, t)\) are also convergent to the partial derivatives of \(u\)(x, t). And the approximate sequence \(u_n(x, t)\) is the best approximation under a complete normal orthogonal system.

MSC:

35K58 Semilinear parabolic equations
35A35 Theoretical approximation in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aronszajn N., Trans. AMS 168 pp 1– (1950)
[2] Bouziani A., C. R. Acad. Sci. Paris, Ser. I Math 321 pp 1177– (1995)
[3] DOI: 10.1016/j.na.2007.07.008 · Zbl 1155.35053 · doi:10.1016/j.na.2007.07.008
[4] DOI: 10.1137/0724036 · Zbl 0677.65108 · doi:10.1137/0724036
[5] Cui M. G., Nonlinear Numercial Analysis in the Reproducing Kernel Space (2008)
[6] DOI: 10.1016/j.na.2006.06.012 · Zbl 1113.35102 · doi:10.1016/j.na.2006.06.012
[7] DOI: 10.1016/S0096-3003(02)00954-2 · Zbl 1038.65088 · doi:10.1016/S0096-3003(02)00954-2
[8] DOI: 10.1016/j.apnum.2004.02.002 · Zbl 1063.65079 · doi:10.1016/j.apnum.2004.02.002
[9] DOI: 10.1002/num.20019 · Zbl 1059.65072 · doi:10.1002/num.20019
[10] DOI: 10.1002/num.20071 · Zbl 1084.65099 · doi:10.1002/num.20071
[11] Dehghan M., Int. J. Nonlinear Sci. Numer. Simul. 7 pp 447– (2006) · doi:10.1515/IJNSNS.2006.7.4.447
[12] DOI: 10.1016/j.chaos.2005.11.010 · Zbl 1139.35352 · doi:10.1016/j.chaos.2005.11.010
[13] DOI: 10.1002/num.20299 · Zbl 1142.65080 · doi:10.1002/num.20299
[14] DOI: 10.1155/JAMSA.2005.13 · Zbl 1077.74019 · doi:10.1155/JAMSA.2005.13
[15] DOI: 10.1016/j.na.2005.12.005 · Zbl 1105.35044 · doi:10.1016/j.na.2005.12.005
[16] DOI: 10.1016/j.apm.2008.03.006 · Zbl 1168.65403 · doi:10.1016/j.apm.2008.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.