Zhou, Shiping; Cui, Minggen Approximate solution for a variable-coefficient semilinear heat equation with nonlocal boundary conditions. (English) Zbl 1182.35143 Int. J. Comput. Math. 86, No. 12, 2248-2258 (2009). Summary: This paper develops an iterative algorithm for the solution to a variable-coefficient semilinear heat equation with nonlocal boundary conditions in the reproducing space. It is proved that the approximate sequence \(u_n(x, t)\) converges to the exact solution \(u(x, t)\). Moreover, the partial derivatives of \(u_n(x, t)\) are also convergent to the partial derivatives of \(u\)(x, t). And the approximate sequence \(u_n(x, t)\) is the best approximation under a complete normal orthogonal system. Cited in 8 Documents MSC: 35K58 Semilinear parabolic equations 35A35 Theoretical approximation in context of PDEs 35K20 Initial-boundary value problems for second-order parabolic equations Keywords:reproducing kernel space; iterative algorithm; best approximation PDF BibTeX XML Cite \textit{S. Zhou} and \textit{M. Cui}, Int. J. Comput. Math. 86, No. 12, 2248--2258 (2009; Zbl 1182.35143) Full Text: DOI OpenURL References: [1] Aronszajn N., Trans. AMS 168 pp 1– (1950) [2] Bouziani A., C. R. Acad. Sci. Paris, Ser. I Math 321 pp 1177– (1995) [3] DOI: 10.1016/j.na.2007.07.008 · Zbl 1155.35053 [4] DOI: 10.1137/0724036 · Zbl 0677.65108 [5] Cui M. G., Nonlinear Numercial Analysis in the Reproducing Kernel Space (2008) [6] DOI: 10.1016/j.na.2006.06.012 · Zbl 1113.35102 [7] DOI: 10.1016/S0096-3003(02)00954-2 · Zbl 1038.65088 [8] DOI: 10.1016/j.apnum.2004.02.002 · Zbl 1063.65079 [9] DOI: 10.1002/num.20019 · Zbl 1059.65072 [10] DOI: 10.1002/num.20071 · Zbl 1084.65099 [11] Dehghan M., Int. J. Nonlinear Sci. Numer. Simul. 7 pp 447– (2006) · Zbl 06942228 [12] DOI: 10.1016/j.chaos.2005.11.010 · Zbl 1139.35352 [13] DOI: 10.1002/num.20299 · Zbl 1142.65080 [14] DOI: 10.1155/JAMSA.2005.13 · Zbl 1077.74019 [15] DOI: 10.1016/j.na.2005.12.005 · Zbl 1105.35044 [16] DOI: 10.1016/j.apm.2008.03.006 · Zbl 1168.65403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.