zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy sliding mode controller for a flexible single-link robotic manipulator. (English) Zbl 1182.70049
Summary: Two robust non-linear controllers have been developed in this study to control the rigid and flexible motions of a single-link robotic manipulator. The controllers consist of a conventional sliding mode controller (CSMC) and a fuzzy sliding mode controller (FSMC). The effects of fuzzy-tuning some of the CSMC control parameters on the overall performance of the arm have been investigated in this study. Furthermore, the proposed FSMC, whose parameters are determined by fuzzy inference systems, has been designed herein based on two Lyapunov functions. The rationale is to considerably reduce the momentum of the system before entering the boundary layer neighboring the sliding surface. This will significantly attenuate the structural deformations of the arm. The digital simulations have demonstrated that the structural deformations, incurred by the beam at the onset of its movement, can be significantly reduced by fuzzy-tuning some of the control parameters. Furthermore, the results have illustrated the superiority of the FSMC over the CSMC in producing a less oscillatory and more accurate response of the angular displacement at the base joint, in damping out the unwanted vibrations of the beam, and in requiring significantly smaller control torques.
MSC:
70Q05Control of mechanical systems (general mechanics)
74M05Control, switches and devices (“smart materials”)
93C42Fuzzy control systems
WorldCat.org
Full Text: DOI