×

Nonlinear interactions in electrophoresis of ideally polarizable particles. (English) Zbl 1182.76653

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1146/annurev.fl.09.010177.001541 · doi:10.1146/annurev.fl.09.010177.001541
[2] DOI: 10.1146/annurev.fluid.21.1.61 · doi:10.1146/annurev.fluid.21.1.61
[3] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989). · Zbl 0789.76003 · doi:10.1017/CBO9780511608810
[4] T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995). · doi:10.1017/CBO9780511574498
[5] DOI: 10.1088/0022-3727/31/18/021 · doi:10.1088/0022-3727/31/18/021
[6] N. G. Green and H. Morgan, ”Separation of submicrometer particles using a combination of dielectrophoretic and electrohydrodynamic forces,” J. Phys. DJPAPBE0022-3727 31, 25 (1998).
[7] DOI: 10.1016/0021-9797(76)90291-5 · doi:10.1016/0021-9797(76)90291-5
[8] DOI: 10.1017/S0022112090001884 · Zbl 0695.76050 · doi:10.1017/S0022112090001884
[9] DOI: 10.1103/RevModPhys.72.813 · doi:10.1103/RevModPhys.72.813
[10] T. S. Simonova, V. N. Shilov, and O. A. Shramko, ”Low-frequency dielectrophoresis and the polarization interaction of uncharged spherical particles with an induced Debye atmosphere of arbitrary thickness,” Colloid J.CJRSEQ1061-933X 63, 114 (2001).
[11] DOI: 10.1063/1.2185690 · doi:10.1063/1.2185690
[12] V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1962).
[13] I. N. Simonov and A. S. Dukhin, ”Theory of electrophoresis of solid conducting particles in case of ideal polarization of a thin diffuse double layer,” Colloid J. 35, 173 (1973).
[14] N. I. Gamayunov, V. A. Murtsovkin, and A. S. Dukhin, ”Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles,” Colloid J. USSRCOJOA50010-1303 48, 197 (1986).
[15] A. S. Dukhin and V. A. Murtsovkin, ”Pair interaction of particles in electric field. 2. Influence of polarization of double layer of dielectric particles on their hydrodynamic interaction in a stationary electric field,” Colloid J. USSRCOJOA50010-1303 48, 203 (1986).
[16] A. S. Dukhin, ”Pair interaction of particles in electric field. 3. Hydrodynamic interaction of ideally polarizable metal particles and dead biological cells,” Colloid J. USSRCOJOA50010-1303 48, 376 (1986).
[17] V. A. Murtsovkin, ”Nonlinear flows near polarized dispersed particles,” Colloid J.CJRSEQ1061-933X 58, 341 (1996).
[18] DOI: 10.1103/PhysRevLett.92.066101 · doi:10.1103/PhysRevLett.92.066101
[19] DOI: 10.1017/S0022112004009309 · Zbl 1093.76065 · doi:10.1017/S0022112004009309
[20] DOI: 10.1017/S0022112006000371 · Zbl 1122.76098 · doi:10.1017/S0022112006000371
[21] DOI: 10.1063/1.1900823 · Zbl 1187.76578 · doi:10.1063/1.1900823
[22] DOI: 10.1017/S0022112006001376 · Zbl 1177.76465 · doi:10.1017/S0022112006001376
[23] DOI: 10.1063/1.2404948 · Zbl 1146.76520 · doi:10.1063/1.2404948
[24] DOI: 10.1063/1.2746847 · Zbl 1182.76859 · doi:10.1063/1.2746847
[25] DOI: 10.1016/j.colsurfa.2005.06.050 · doi:10.1016/j.colsurfa.2005.06.050
[26] DOI: 10.1103/PhysRevE.75.011503 · doi:10.1103/PhysRevE.75.011503
[27] DOI: 10.1103/PhysRevLett.100.058302 · doi:10.1103/PhysRevLett.100.058302
[28] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965). · Zbl 0612.76032
[29] S. Kim and S. P. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, 1991).
[30] DOI: 10.1098/rspa.1973.0130 · doi:10.1098/rspa.1973.0130
[31] DOI: 10.1017/S0022112084000355 · Zbl 0545.76037 · doi:10.1017/S0022112084000355
[32] DOI: 10.1006/jcph.1994.1049 · Zbl 0799.65137 · doi:10.1006/jcph.1994.1049
[33] DOI: 10.1017/S0022112099005285 · Zbl 1004.76069 · doi:10.1017/S0022112099005285
[34] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992). · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[35] DOI: 10.1016/S0045-7930(00)00024-4 · Zbl 1029.76037 · doi:10.1016/S0045-7930(00)00024-4
[36] DOI: 10.1016/0304-3886(93)90104-F · doi:10.1016/0304-3886(93)90104-F
[37] A. Biesheuvel and L. van Wijngaarden, ”The motion of pairs of gas bubbles in a perfect fluid,” J. Eng. Math.JLEMAU0022-0833 16, 349 (1982). · Zbl 0499.76088
[38] J. B. W. Kok, ”Dynamics of a pair of gas bubbles moving through liquid,” Eur. J. Mech. B/FluidsEJBFEV0997-7546 12, 515 (1993).
[39] DOI: 10.1016/j.jnnfm.2006.02.010 · Zbl 1195.76409 · doi:10.1016/j.jnnfm.2006.02.010
[40] DOI: 10.1063/1.1668273 · Zbl 1186.76585 · doi:10.1063/1.1668273
[41] DOI: 10.1017/S002211200300418X · Zbl 1031.76060 · doi:10.1017/S002211200300418X
[42] E. Yariv and T. Miloh, ”Electro-convection about conducting particles,” J. Fluid Mech.JFLSA70022-1120 595, 163 (2008). · Zbl 1159.76393
[43] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972). · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.