Zhang, Qiye; Xie, Weixian; Fan, Lei Fuzzy complete lattices. (English) Zbl 1183.06004 Fuzzy Sets Syst. 160, No. 16, 2275-2291 (2009). The authors present an approach to fuzzification of complete lattices, which is a special kind of complete \(\Omega\)-lattices defined by Lai and Zhang. Tarski fixed-point theorem for the \(L\)-fuzzy complete lattices was proved in a different way. Some fuzzy powerset operators are suggested. Reviewer: Fu-Gui Shi (Beijing) Cited in 33 Documents MSC: 06B23 Complete lattices, completions 06D72 Fuzzy lattices (soft algebras) and related topics 18B35 Preorders, orders, domains and lattices (viewed as categories) Keywords:\(L\)-fuzzy complete lattice; Tarski fixed-point theorem; fuzzy powerset operator; \(L\)-fuzzy complete-lattice-homomorphism PDF BibTeX XML Cite \textit{Q. Zhang} et al., Fuzzy Sets Syst. 160, No. 16, 2275--2291 (2009; Zbl 1183.06004) Full Text: DOI OpenURL References: [1] Abramsky, S.; Jung, A., Domain theory, (), 1-168 [2] Abramsky, S.; Vickers, S., Quantales, observational logic and process semantics, Mathematical structures in computer science, 3, 161-227, (1993) · Zbl 0823.06011 [3] Bělohlávek, R., Fuzzy relational systems, foundations and principles, (2002), Kluwer Academic/Plenum Publishers New York · Zbl 1067.03059 [4] Bělohlávek, R., Concept lattices and order in fuzzy logic, Annals of pure and applied logic, 128, 277-298, (2004) · Zbl 1060.03040 [5] Bělohlávek, R., Lattice-type fuzzy order is uniquely given by its 1-cut: proof and consequences, Fuzzy sets and systems, 123, 447-458, (2004) · Zbl 1044.06002 [6] Bonsangue, M.M.; van Breugel, F.; Rutten, J.J.M.M., Generalized ultrametric spaces: completion, topology and powerdomains via the yoneda embedding, Theoretical computer science, 193, 1-51, (1998) · Zbl 0997.54042 [7] Davey, B.A.; Priestley, H.A., Introduction to lattices and order, (1990), Cambridge University Press Cambridge · Zbl 0701.06001 [8] Eilenberg, S.; Kelly, G.M., Closed categories, () · Zbl 0192.10604 [9] L. Fan, A new approach to quantitative domain theory, Electronic Notes in Theoretic Computer Science 45 (2001) \(\langle\)http://www.elsevier.nl/locate/entcs⟩. · Zbl 1260.68217 [10] Flagg, R.C., Quantale and continuity spaces, Algebra universalis, 37, 257-276, (1997) · Zbl 0906.54024 [11] B. Flagg, P. Sünderhauf, K. Wagner, A logical approach to quantitative domain theory, preprint, 1996, submitted for publication. [12] Flagg, B.; Kopperman, R., Continuity spaces: reconciling domains and metric spaces, Theoretical computer science, 177, 111-138, (1997) · Zbl 0901.68109 [13] Fuentes-González, R., Down and up operators associated to fuzzy relations and t-norms: a definition of fuzzy semi-ideals, Fuzzy sets and systems, 117, 377-389, (2001) · Zbl 0965.03065 [14] Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S., A compendium of continuous lattices, (1980), Springer Berlin, Heidelberg, New York · Zbl 0452.06001 [15] Goguen, J.A., L-fuzzy sets, Journal of mathematical analysis and applications, 18, 145-174, (1967) · Zbl 0145.24404 [16] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Dordrecht · Zbl 0937.03030 [17] Höhle, U., On the fundamentals of fuzzy set theory, Journal of mathematical analysis and applications, 201, 786-826, (1996) · Zbl 0860.03038 [18] U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids, in: S.E. Rodabaugh, E.P. Klement, U. Höhle (Eds.), Applications of Category Theory to Fuzzy Subsets, Theory and Decision Library: Series B: Mathematical and Statistical Methods, Vol. 14, Kluwer Academic Publishers, Boston, Dordrecht, London, 1992, pp. 33-72 (Chapter 2). [19] U. Höhle, Categorical axioms of neighborhood systems, in: W. Kotzé (Ed.), Quaestiones Mathematicae 20 (1997) 373-414 (Special Issue). · Zbl 0891.54002 [20] Höhle, U.; Blanchard, N., Partial ordering in L-underdeterminate sets, Information sciences, 35, 133-144, (1985) · Zbl 0576.06004 [21] U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. [22] W. Kotzé (Ed.), Quaestiones Mathematicae 20 (1997) (Special Issue). [23] Lai, H.L.; Zhang, D.X., Fuzzy preorder and fuzzy topology, Fuzzy sets and systems, 157, 1865-1885, (2006) · Zbl 1118.54008 [24] H.L. Lai, D.X. Zhang, Many-valued complete distributivity, arXiv:math.CT/0603590, 2006. [25] Johnstone, P.T., Stone spaces, (1982), Cambridge University Press Cambridge · Zbl 0499.54001 [26] Kelly, G.M., Basic concepts of enriched category theory, London mathematical soceity lecture notes series, Vol. 64, (1982), Cambridge University Press Cambridge, (Also: Reprints in Theory and Applications of Categories (10) (2005).) [27] Lawvere, F.W., Metric spaces generalized logic, and closed categories, Rendiconti del seminario matematico e fisicodi milano, 43, 135-166, (1973), (Also: Reprints in Theory and Applications of Categories (1) (2002).) · Zbl 0335.18006 [28] Mac Lane, S., Categories for the working Mathematician, (2003), Springer Berlin, Heidelberg, New York · Zbl 0906.18001 [29] Manes, E.G., Algebraic theories, (1976), Springer Berlin, Heidelberg, New York · Zbl 0489.18003 [30] Rodabaugh, S.E., Point-set lattice-theoretic topology, Fuzzy sets and systems, 40, 297-345, (1991) · Zbl 0733.54003 [31] S.E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies, in: W. Kotzé (Ed.), Quaestiones Mathematicae 20(Suppl.), (1997) 463-530. · Zbl 0911.04003 [32] S.E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999, pp. 91-116 (Chapter 2). · Zbl 0974.03047 [33] S.E. Rodabaugh, E.P. Klement, U. Höhle (Eds.), Applications of Category Theory to Fuzzy Subsets, Theory and Decision Library: Series B: Mathematical and Statistical Methods, Vol. 14, 1992, Kluwer Academic Publishers, Boston, Dordrecht, London. · Zbl 0741.00078 [34] S.E. Rodabaugh, E.P. Klement (Eds.), Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, Vol. 20, 2003, Kluwer Academic Publishers, Boston, Dordrecht, London. · Zbl 1020.00006 [35] Rutten, J.J.M.M., Elements of generalized ultrametric domain theory, Theoretical computer science, 170, 349-381, (1996) · Zbl 0874.68189 [36] J.J.M.M. Rutten, Weighted colimits and formal balls in generalized metric spaces, CWI, SEN-R9711, 1997. · Zbl 0982.54029 [37] Šešelja, B.; Tepavčević, A., Fuzzifying closure systems and fuzzy lattices, (), 111-118 [38] Šešelja, B.; Tepavčević, A., Fuzzy ordering relation and fuzzy poset, (), 209-216 [39] L.N. Stout, Fully fuzzy topology, in: S.E. Rodabaugh, E.P. Klement (Eds.), Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, Vol. 20, 2003, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 235-253 (Chapter 8). [40] Tepavčević, A.; Trajkovski, G., L-fuzzy lattices: an introduction, Fuzzy sets and systems, 123, 209-216, (2001) · Zbl 1009.06007 [41] K.R. Wagner, Solving recursive domain equations with enriched categories, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-94-159, July 1994. [42] Wagner, K.R., Liminf convergence in \(\Omega\)-categories, Theoretical computer science, 184, 61-104, (1997) · Zbl 0935.18008 [43] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (1965) · Zbl 0139.24606 [44] Zadeh, L.A., Similarity relations and fuzzy orderings, Information sciences, 3, 159-176, (1971) · Zbl 0218.02057 [45] Zhang, Q.Y.; Fan, L., Continuity in quantitative domains, Fuzzy sets and systems, 154, 118-131, (2005) · Zbl 1080.06007 [46] Q.Y. Zhang, L. Fan, A kind of L-fuzzy complete lattices and adjoint functor theorem for LF-Posets, Report on the Fourth International Symposium on Domain Theory, Hunan University, Changsha, China, June 2006. [47] W.X. Xie, Q.Y. Zhang, L. Fan, The Dedekind-MacNeille completions for fuzzy posets, Fuzzy Sets and Systems, in press, doi:10.1016/j.fss.2008.12.002. · Zbl 1185.06003 [48] Q.Y. Zhang, L. Fan, W.X. Xie, Adjoint functor theorem for L-fuzzy posets, Bulletin of the Allahabad Mathematical Society, submitted for publication. · Zbl 1180.06004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.