zbMATH — the first resource for mathematics

Representations of algebraic groups of type \(D_n\) in characteristic 2 with small weight multiplicities. (English. Russian original) Zbl 1183.20050
J. Math. Sci., New York 161, No. 4, 558-564 (2009); translation from Zap. Nauchn. Semin. POMI 365, 182-195 (2009).
Summary: Lower estimates for the maximal weight multiplicities in irreducible representations of algebraic groups of type \(D_n\) in characteristic 2 are found. lf \(n\geq 8\), then either such a multiplicity is at least \(n-4-[n]_4\), where \([n]_4\) is the residue of \(n\) modulo 4, or all of its weight multiplicities are equal to 1. For groups of types \(B_n\) and \(D_n\) in odd characteristic and of type \(C_n\), in characteristics greater than 7, similar results were obtained earlier.

20G05 Representation theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
Full Text: DOI
[1] A. A. Baranov, A. A. Osinovskaya, and I. D. Suprunenko, ”Modular representations of classical groups with small weight multiplicities,” J. Math. Ser. (accepted). · Zbl 1186.20030
[2] A. A. Baranov and I. D. Suprunenko, ”Branching rules for modular fundamental representations of symplectic groups,” Bull. Loudon Math. Soc., 32, 409–420 (2000). · Zbl 1025.20031
[3] A. Borel, ”Properties and linear representations of Chevalley groups,” Lect. Notes Math., 131, 1–55 (1970). · Zbl 0197.30501
[4] N. Bourbaki, Groupes et Algèbres de Lie, Chaps. IV-VI, Paris, Hermann (1968). · Zbl 0186.33001
[5] N. Bourbaki, Groupes et algèbres de Lie, Chaps. VII–VHI. Paris, Hermann (1975). · Zbl 0329.17002
[6] J. C. Jantzen, ”Darstellungen halbeinfacher algebraischer gruppen und zugeordnete kontravariante formen,” Bormer Math. Sehr., 67 (1973). · Zbl 0288.17004
[7] G. M. Seitz, ”The maximal subgroups of classical algebraic groups,” Memoirs Amer. Math. Soc., 365, 1–286 (1987). · Zbl 0624.20022
[8] S. Smith, ”lrreducible modules and parabolic subgroups,” J. Algebra, 75, 286–289 (1982). · Zbl 0496.20030
[9] R. Steinberg, ”Representations of algebraic groups,” Nagoya Math. J., 22, 33–56 (1963). · Zbl 0271.20019
[10] I. D. Suprunenko, ”On Jordan blocks of elements of order p in irreducible representations of classical groups with p-large highest weights,” J. Algebra, 191, 589–627 (1997). · Zbl 0893.20032
[11] A. E. Zalesskii and I. D. Suprunenko, ”Representations of dimensions (p n {\(\pm\)} 1) of a symplectic group of degree 2n over a finite field,” Vesti Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 9–15 (1987).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.