Hernández M., Eduardo; Aki, Sueli M. Tanaka Global solutions for abstract impulsive differential equations. (English) Zbl 1183.34083 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 3-4, 1280-1290 (2010). The authors consider an impulse differential equation of the sort \[ u'(t)= Au(t)+ f(t,u(t)),\quad t\in\mathbb{R},\quad t\neq t_i,\quad i\in F, \]\[ \Delta u(t_i)= I_i(u(t_i)),\quad i\in F, \] where \(A\) is the infinitesimal generator of a hyperbolic \(C_0\)-semigroup of bounded linear operators \((T^{(t)})_{t\geq 0}\) on a Banach space \[ (X,\|.\|),\;f: \mathbb{R}\times X\to X,\;I_i: X\to X,\quad i\in F \] are continuous functions, \(F\subset\mathbb{Z}\), \(\{t_i: i\in F\}\) is a discrete set of fixed real numbers \(t_i< t_j\) for \(i< j\). For \(t\in [a,b]\), \(t\neq tn_i\), \(i= 1,\dots, m\) a definition for a mild solution is given. Necessary and sufficient conditions for the boundedness of their solution are given. Reviewer: Stepan Kostadinov (Plovdiv) Cited in 8 Documents MSC: 34G99 Differential equations in abstract spaces 34A37 Ordinary differential equations with impulses 34D09 Dichotomy, trichotomy of solutions to ordinary differential equations 47D06 One-parameter semigroups and linear evolution equations Keywords:exponential dichotomy; \(C_{0}\)-semigroup; impulsive system PDF BibTeX XML Cite \textit{E. Hernández M.} and \textit{S. M. T. Aki}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 3--4, 1280--1290 (2010; Zbl 1183.34083) Full Text: DOI References: [1] Bainov, D. D.; Simeonov, P. S., Impulsive Differential Equations: Periodic Solutions and Applications (1993), Longman Scientific and Technical: Longman Scientific and Technical New York · Zbl 0793.34011 [2] Lakshmikanthan, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore [3] Samoilenko, A. M.; Perestyuk, N. A., Impulsive differential equations, (World Scientific Series on Nonlinear Science, Series A. World Scientific Series on Nonlinear Science, Series A, Monographs and Treatises, vol. 14 (1995), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ) · Zbl 0837.34003 [4] Frigon, M.; O’Regan, D., Existence results for first-order impulsive differential equations, J. Math. Anal. Appl., 193, 1, 96-113 (1995) · Zbl 0853.34011 [5] Frigon, M.; O’Regan, D., First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl., 233, 2, 730-739 (1999) · Zbl 0930.34016 [6] Frigon, M.; O’Regan, D., Impulsive differential equations with variable times, Nonlinear Anal. TMA, 26(, 12, 1913-1922 (1996) · Zbl 0863.34015 [7] Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impuls. Syst., 3, 1, 57-88 (1997) · Zbl 0879.34014 [8] Hernández, E.; Henríquez, H. R.; Rabello, M., Existence of solutions for a class of impulsive partial neutral functional differential equations, J. Math. Anal. Appl., 331, 2, 1135-1158 (2007) · Zbl 1123.34062 [9] Hernández, E.; Henríquez, H., Impulsive partial neutral differential equations, Appl. Math. Lett., 19, 3, 215-222 (2006) · Zbl 1103.34068 [10] Hernández, E.; Pierri, M.; Goncalves, G., Existence results for an impulsive abstract partial differential equation with state-dependent delay, Comput. Math. Appl., 52, 3-4, 411-420 (2006) · Zbl 1153.35396 [11] Liu, J. H., Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., 6, 1, 77-85 (1999) · Zbl 0932.34067 [12] Rogovchenko, Y. V., Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., 207, 2, 300-315 (1997) · Zbl 0876.34011 [13] Benchohra, M.; Henderson, J.; Ntouyas, S., Impulsive differential equations and inclusions, (Contemporary Mathematics and its Applications, vol. 2 (2006), Hindawi Publishing Corporation: Hindawi Publishing Corporation New York) · Zbl 1130.34003 [14] Shen, J.; Liu, X., Global existence results for impulsive differential equations, J. Math. Anal. Appl., 314, 2, 546-557 (2006) · Zbl 1086.34013 [15] Luo, Z.; Shen, J., Global existence results for impulsive functional differential equations, J. Math. Anal. Appl., 323, 1, 644-653 (2006) · Zbl 1106.34053 [16] Ouahab, A., Local and global existence and uniqueness results for impulsive functional differential equations with multiple delay, J. Math. Anal. Appl., 323, 1, 456-472 (2006) · Zbl 1121.34084 [17] Nakagawa, K., Existence of a global solution for an impulsive semilinear parabolic equation and its asymptotic behaviour, Commun. Appl. Anal., 4, 3, 403-409 (2000) · Zbl 1084.35549 [18] Nakagawa, K., Asymptotic behaviour of solutions of an impulsive semilinear parabolic Cauchy problem, (Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, 1997 (1998), VSP: VSP Utrecht), 335-340 · Zbl 0917.35048 [19] Hernández, E.; Tanaka Aki, S. M.; Henríquez, H., Global solutions for impulsive abstract partial differential equations, Comput. Math. Appl., 56, 5, 1206-1215 (2008) · Zbl 1155.35481 [20] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Birkhäuser: Birkhäuser Berlin · Zbl 0816.35001 [21] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces (1987), Robert E. Krieger Publ. Co.: Robert E. Krieger Publ. Co. Florida [22] Pazy, A., (Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44 (1983), Springer-Verlag: Springer-Verlag New York, Berlin) · Zbl 0516.47023 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.