zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rare events in the Boussinesq system with fluctuating dynamical boundary conditions. (English) Zbl 1183.35280
Summary: The Boussinesq system models various phenomena in geophysical and climate dynamics. It is a coupled system of the Navier-Stokes equations and the salinity transport equation. Due to uncertainty in salinity flux on fluid boundary, this system is subject to random fluctuations on the boundary. This stochastic Boussinesq system can be transformed into a random dynamical system. Rare events, or small probability events, are investigated in the context of large deviations. A large deviations principle is established via a weak convergence approach based on a recently developed variational representation of functionals of infinite dimensional Brownian motion.

35R60PDEs with randomness, stochastic PDE
35Q35PDEs in connection with fluid mechanics
60H15Stochastic partial differential equations
76M35Stochastic analysis (fluid mechanics)
86A05Hydrology, hydrography, oceanography
86A10Meteorology and atmospheric physics
Full Text: DOI
[1] Brezis, H.; Mironescu, P.: Gagliardo -- Nirenberg, composition and products in fractional Sobolev spaces, J. evol. Equ. 1, 387-404 (2001) · Zbl 1023.46031 · doi:10.1007/PL00001378
[2] Brune, P.; Duan, J.; Schmalfuss, B.: Random dynamics of the Boussinesq system with dynamical boundary conditions, Stoch. anal. Appl. 27, 1096-1116 (2009) · Zbl 1179.60043 · doi:10.1080/07362990902976546
[3] Budhiraja, A.; Dupuis, P.; Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems, Ann. probab. 36, 1390-1420 (2008) · Zbl 1155.60024 · doi:10.1214/07-AOP362
[4] Cerrai, S.; Rockner, M.: Large deviations for stochastic reaction -- diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. probab. 32, 1100-1139 (2004) · Zbl 1054.60065 · doi:10.1214/aop/1079021473
[5] Chang, M. H.: Large deviations for the Navier -- Stokes equations with small stochastic perturbations, Appl. math. Comput. 76, 65-93 (1996) · Zbl 0851.76013 · doi:10.1016/0096-3003(95)00150-6
[6] Chenal, F.; Millet, A.: Uniform large deviations for parabolic spdes and applications, Stochastic process. Appl. 72, 161-186 (1997) · Zbl 0942.60056 · doi:10.1016/S0304-4149(97)00091-4
[7] Chow, P. L.: Large deviation problem for some parabolic Itô equations, Comm. pure appl. Math. 45, 97-120 (1992) · Zbl 0739.60055 · doi:10.1002/cpa.3160450105
[8] Chueshov, I.; Schmalfuss, B.: Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential integral equations 17, 751-780 (2004) · Zbl 1150.60032
[9] Chueshov, I.; Schmalfuss, B.: Qualitative behavior of a class of stochastic parabolic pdes with dynamical boundary conditions, Discrete contin. Dyn. syst. 18, 315-338 (2007) · Zbl 1126.37050 · doi:10.3934/dcds.2007.18.315
[10] Constantin, P.; Foias, C.: Navier -- Stokes equations, (1988) · Zbl 0687.35071
[11] Da Prato, G.; Zabczyk, J.: Stochastic equations in infinite dimensions, (1992) · Zbl 0761.60052
[12] Dijkstra, H. A.: Nonlinear physical oceanography, (2000) · Zbl 0964.86003
[13] Duan, J.; Millet, A.: Large deviations for the Boussinesq equations under random influences, Stochastic process. Appl. 119, 2052-2081 (2009) · Zbl 1163.60315 · doi:10.1016/j.spa.2008.10.004
[14] Duan, J.; Gao, H.; Schmalfuss, B.: Stochastic dynamics of a coupled atmosphere-ocean model, Stoch. dyn. 2, 357-380 (2002) · Zbl 1090.86003 · doi:10.1142/S0219493702000467
[15] Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions, Comm. partial differential equations 18, 1309-1364 (1993) · Zbl 0816.35059 · doi:10.1080/03605309308820976
[16] Freidlin, M. I.; Wentzell, A. D.: Reaction -- diffusion equation with randomly perturbed boundary condition, Ann. probab. 20, 963-986 (1992) · Zbl 0755.35055 · doi:10.1214/aop/1176989813
[17] Kallianpur, G.; Xiong, J.: Large deviations for a class of stochastic partial differential equations, Ann. probab. 24, 320-345 (1996) · Zbl 0854.60026 · doi:10.1214/aop/1042644719
[18] Kunita, H.: Stochastic flows and stochastic differential equations, (1990) · Zbl 0743.60052
[19] Ozgokmen, T.; Iliescu, T.; Fischer, P.; Srinivasan, A.; Duan, J.: Large eddy simulation of stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain, Ocean model. 16, 106-140 (2007)
[20] Peszat, S.: Large deviation estimates for stochastic evolution equations, Probab. theory related fields 98, 113-136 (1994) · Zbl 0792.60057 · doi:10.1007/BF01311351
[21] Robinson, J. C.: Infinite-dimensional dynamical systems, Cambridge texts appl. Math. (2001)
[22] Sowers, R.: Large deviations for a reaction -- diffusion system with non-Gaussian perturbations, Ann. probab. 20, 504-537 (1992) · Zbl 0749.60059 · doi:10.1214/aop/1176989939
[23] Sritharan, S. S.; Sundar, P.: Large deviations for the two-dimensional Navier -- Stokes equations with multiplicative noise, Stochastic process. Appl. 116, 1636-1659 (2006) · Zbl 1117.60064 · doi:10.1016/j.spa.2006.04.001
[24] Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, Appl. math. Sci. 68 (1997) · Zbl 0871.35001
[25] Wang, W.; Duan, J.: Reductions and deviations for stochastic partial differential equations under fast dynamical boundary conditions, Stoch. anal. Appl. 27, 431-459 (2009) · Zbl 1166.60038 · doi:10.1080/07362990802679166
[26] Yang, D.; Duan, J.: An impact of stochastic dynamic boundary conditions on the evolution of the Cahn -- Hilliard system, Stoch. anal. Appl. 25, 613-639 (2007) · Zbl 1124.60052 · doi:10.1080/07362990701282963
[27] Zabczyk, J.: On large deviations for stochastic evolution equations, Lecture notes in control and inform. Sci. (1988)