Bernicot, Frédéric Uniform estimates for paraproducts and related multilinear multipliers. (English) Zbl 1183.42012 Rev. Mat. Iberoam. 25, No. 3, 1055-1088 (2009). Let \(\mathcal{S}(\mathbb{R}^{dn})\) be the Schwartz space on \(\mathbb{R}^{dn}\). A \(n\)-linear multiplier \(T\) is given by its symbol \(\sigma\in \mathcal{S}(\mathbb{R}^{dn})\), with the formula: \[ T(f_1,\dots, f_n)(x):=\int_{\mathbb{R}^{dn}} e^{ix.(\xi_1+\dots +\xi_n)}\sigma(\xi)\prod_{i=1}^{n}\widehat{f_i}(\xi_i)d\xi. \] In the paper under review some continuous extendedness results for the operator \(T\) are proved. The author uses the ideas of the Calderón-Zygmund theory with a few improvements. Reviewer: Vitaly Vladimirovich Volchkov (Donetsk) Cited in 6 Documents MSC: 42B15 Multipliers for harmonic analysis in several variables 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory Keywords:paraproducts; uniform estimate; multilinear operators; Littlewood-Paley theory; Calderón-Zygmund decomposition × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Bony, J. M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14 (1981), 209-246. · Zbl 0495.35024 [2] Bownik, M.: Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Amer. Math. Soc. 133 (2005), no. 12, 3535-3542. · Zbl 1070.42006 · doi:10.1090/S0002-9939-05-07892-5 [3] Coifman, R. and Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212 (1975), 315-331. · Zbl 0324.44005 · doi:10.2307/1998628 [4] Coifman, R. and Meyer, Y.: Au delà des opérateurs pseudo-différentiels . Astérisque 57 . Societé Mathématique de France, Paris, 1978. · Zbl 0483.35082 [5] Coifman, R. and Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28 (1978), 177-202. · Zbl 0368.47031 · doi:10.5802/aif.708 [6] Coifman, R. and Meyer, Y.: Ondelettes et opérateurs III. Opérateurs multilinéaires . Actualités Mathématiques. Hermann, Paris, 1991. · Zbl 0745.42012 [7] Fan, D. and Li, X.: A bilinear oscillatory integrals along parabolas. Positivity 13 (2009), no. 2, 339-366. · Zbl 1165.42303 · doi:10.1007/s11117-008-2270-3 [8] Grafakos, L.: Classical and modern Fourier analysis . Pearson Education, Upper Saddle River, NJ, 2004. · Zbl 1148.42001 [9] Grafakos, L. and Kalton, N.: The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 146 (2001), no. 2, 115-156. · Zbl 0981.42008 · doi:10.4064/sm146-2-2 [10] Grafakos, L. and Kalton, N.: Multilinear Calderón-Zygmund operators on Hardy spaces. Collect. Math. 52 (2001), 169-179. · Zbl 0986.42008 [11] Grafakos, L. and Torres, R.: Multilinear Calderón-Zygmund theory. Adv. in Math. 165 (2002), 124-164. · Zbl 1032.42020 · doi:10.1006/aima.2001.2028 [12] Kenig, C. and Stein, E. M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6 (1999), no. 1, 1-15. · Zbl 0952.42005 · doi:10.4310/MRL.1999.v6.n1.a1 [13] Li, X.: Uniform estimates for some paraproducts. New York J. Math. 14 (2008), 145-192. · Zbl 1213.42046 [14] Meda, S., Sjögren, P. and Vallarino, M.: On the \(H^1\)-\(L^1\) boundedness of operators. Proc. Amer. Math. Soc. 136 (2008), no. 8, 2921-2931. · Zbl 1273.42021 · doi:10.1090/S0002-9939-08-09365-9 [15] Meyer, Y., Taibleson, M. and Weiss, G.: Some functional analytic properties of the spaces \(B_q\) generated by blocks. Indiana. Univ. Math. J. 34 (1985), 493-515. · Zbl 0552.42002 · doi:10.1512/iumj.1985.34.34028 [16] Muscalu, C., Pipher, J., Tao, T. and Thiele, C.: A short proof of the Coifman-Meyer multilinear theorem. Non published, available at http://www.math.brown.edu/\(\sim\)jpipher/trilogy1.pdf. [17] Muscalu, C., Tao, T. and Thiele, C.: Uniform estimates on paraproducts. J. Anal. Math 87 (2002), 369-384. · Zbl 1043.42012 · doi:10.1007/BF02868481 [18] Muscalu, C., Tao, T. and Thiele, C.: Uniforms estimates on multi-linear operators with modulation symmetry. J. Anal. Math 88 (2002), 255-309. · Zbl 1041.42013 · doi:10.1007/BF02786579 [19] Stein, E. M.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton University Press, Princeton, N.J. 1970. · Zbl 0207.13501 [20] Stein, E. M.: Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals . Princeton Mathematical Series 43 . Monographs in Harmonic Analysis III. Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001 [21] Uchiyama, A.: Hardy spaces on the Euclidean space . Springer Monographs in Mathematics. Springer-Verlag, Tokyo, 2001. · Zbl 0984.42015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.