zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Schemes for finding minimum-norm solutions of variational inequalities. (English) Zbl 1183.49012
Summary: Consider the Variational Inequality (VI) of finding a point $x^*$ such that $$x^*\in\text{Fix}(T)\text{ and }\langle(I-S)x^*,x-x^*\rangle\ge 0,\quad x\in \text{Fix}(T)\tag*$$ where $T,S$ are nonexpansive self-mappings of a closed convex subset $C$ of a Hilbert space, and $\text{Fix}(T)$ is the set of fixed points of $T$. Assume that the solution set $\Omega$ of this VI is nonempty. This paper introduces two schemes, one implicit and one explicit, that can be used to find the minimum-norm solution of VI $(*)$; namely, the unique solution $x^*$ to the quadratic minimization problem: $x^*=\text{argmin}_{x\in \Omega}\|x\|^2$.

MSC:
49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
47H09Mappings defined by “shrinking” properties
65J15Equations with nonlinear operators (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Stud. comput. Math. 8, 473-504 (2001) · Zbl 1013.49005
[2] Yamada, I.; Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. funct. Anal. optim. 25, 619-655 (2004) · Zbl 1095.47049 · doi:10.1081/NFA-200045815
[3] Yamada, I.; Ogura, N.; Shirakawa, N.: A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, Contemp. math. 313, 269-305 (2002) · Zbl 1039.47051
[4] Mainge, P. -E.; Moudafi, A.: Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific J. Optim. 3, No. 3, 529-538 (2007) · Zbl 1158.47057 · http://www.ybook.co.jp/online/pjoe/vol3/pjov3n3p529.html
[5] Lu, X.; Xu, H. K.; Yin, X.: Hybrid methods for a class of monotone variational inequalities, Nonlinear anal. (2008)
[6] Chen, R.; Fu, S.; Xu, H. K.: Regularization and iteration methods for a class of monotone variational inequalities, Taiwanese J. Math. 13, No. 2B, 739-752 (2009) · Zbl 1179.58008
[7] Cianciaruso, F.; Colao, V.; Muglia, L.; Xu, H. K.: On an implicit hierarchical fixed point approach to variational inequalities, Bull. austral. Math. soc. 80, No. 1, 117-124 (2009) · Zbl 1168.49005 · doi:10.1017/S0004972709000082
[8] Moudafi, A.; Mainge, P. -E.: Towards viscosity approximations of hierarchical fixed-point problems, Fixed point theory appl., 1-10 (2006) · Zbl 1143.47305 · doi:10.1155/FPTA/2006/95453
[9] G. Marino, H.K. Xu, Explicit hierarchical fixed Point approach to variational inequalities (preprint) · Zbl 1221.49012 · doi:10.1007/s10957-010-9775-1
[10] H.K. Xu, Viscosity method for hierarchical fixed point approach to variational inequalities, Taiwanese J. Math. 14 (2) (2010) (in press) · Zbl 1215.47099
[11] Cabot, A.: Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization, SIAM J. Optim. 15, 555-572 (2005) · Zbl 1079.90098 · doi:10.1137/S105262340343467X
[12] Moudafi, A.: Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse problems 23, 1635-1640 (2007) · Zbl 1128.47060 · doi:10.1088/0266-5611/23/4/015
[13] Xu, H. K.; Kim, T. H.: Convergence of hybrid steepest-descent methods for variational inequalities, J. optim. Theory appl. 119, 185-201 (2003) · Zbl 1045.49018 · doi:10.1023/B:JOTA.0000005048.79379.b6
[14] Xu, H. K.: Iterative algorithms for nonlinear operators, J. London math. Soc. 66, 240-256 (2002) · Zbl 1013.47032
[15] Xu, H. K.: An iterative approach to quadratic optimization, J. optim. Theory appl. 116, 659-678 (2003) · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[16] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings, J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059
[17] Xu, H. K.: A variable krasnoselski-Mann algorithm and the multiple-set split feasibility problem, Inverse problems 22, 2021-2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[18] Yao, Y.; Liou, Y. -C.: Weak and strong convergence of krasnoselski-Mann iteration for hierarchical fixed point problems, Inverse problems 24, No. 1, 015015 (2008) · Zbl 1154.47055 · doi:10.1088/0266-5611/24/1/015015
[19] Geobel, K.; Kirk, W. A.: Topics in metric fixed point theory, Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031