×

On construction of the smallest one-sided confidence interval for the difference of two proportions. (English) Zbl 1183.62054

Summary: For any class of one-sided \(1 - \alpha \) confidence intervals with a certain monotonicity ordering on the random confidence limit, the smallest interval, in the sense of the set inclusion for the difference of two proportions of two independent binomial random variables, is constructed based on a direct analysis of the coverage probability function. A special ordering on the confidence limit is developed and the corresponding smallest confidence interval is derived. This interval is then applied to identify the minimum effective dose (MED) for binary data in dose-response studies, and a multiple test procedure that controls the familywise error rate at level \(\alpha \) is obtained. A generalization of constructing the smallest one-sided confidence interval to other discrete sample spaces is discussed in the presence of nuisance parameters.

MSC:

62F25 Parametric tolerance and confidence regions
62J15 Paired and multiple comparisons; multiple testing
62P10 Applications of statistics to biology and medical sciences; meta analysis

References:

[1] Barnard, G. A. (1947). Significance tests for 2 \times 2 tables. Biometrika 34 123-138. · Zbl 0029.15603
[2] Bol’shev, L. N. (1965). On the construction of confidence limits. Theory Probab. Appl. 10 173-177 (English translation).
[3] Bol’shev, L. N. and Loginov, E. A. (1966). Interval estimates in the presence of nuisance parameters. Theory Probab. Appl. 11 82-94 (English translation). · Zbl 0168.17406 · doi:10.1137/1111004
[4] Bretz, F., Pinheiro, J. C. and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61 738-748. · Zbl 1079.62105 · doi:10.1111/j.1541-0420.2005.00344.x
[5] Casella, G. and Berger, R. L. (1990). Statistical Inference . Duxbury Press, Belmont, CA. · Zbl 0699.62001
[6] Hsu, J. C. and Berger, R. L. (1999). Stepwise confidence intervals without multiplicity adjustment for dose-response and toxicity studies. J. Amer. Statist. Assoc. 94 468-482.
[7] Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63 655-660. JSTOR: · Zbl 0353.62037 · doi:10.1093/biomet/63.3.655
[8] Martin, A. A. and Silva, M. A. (1994). Choosing the optimal unconditional test for comparing two independent proportions. Comput. Statist. Data Anal. 17 555-574. · Zbl 0937.62534 · doi:10.1016/0167-9473(94)90148-1
[9] Tamhane, A. C. and Dunnett, C. W. (1999). Stepwise multiple test procedures with biometric applications. J. Statist. Plann. Inferences 82 55-68. · Zbl 0979.62049 · doi:10.1016/S0378-3758(99)00031-2
[10] Tamhane, A. C., Hochberg, Y. and Dunnett, C. W. (1996). Multiple test procedures for dose finding. Biometrics 52 21-37. · Zbl 0906.62115 · doi:10.2307/2533141
[11] Wang, W. (2006). Smallest confidence intervals for one binomial proportion. J. Statist. Plann. Inference 136 4293-4306. · Zbl 1098.62033 · doi:10.1016/j.jspi.2005.08.044
[12] Wang, W. and Peng, J. (2008). A step-up test procedure to identify the minimum effective dose. Technical report, Dept. Mathematics and Statistics, Wright State Univ.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.