Delaigle, Aurore; Hall, Peter Defining probability density for a distribution of random functions. (English) Zbl 1183.62061 Ann. Stat. 38, No. 2, 1171-1193 (2010). Summary: The notion of probability density for a random function is not as straightforward as in finite-dimensional cases. While a probability density function generally does not exist for functional data, we show that it is possible to develop the notion of density when functional data are considered in the space determined by the eigenfunctions of principal component analysis. This leads to a transparent and meaningful surrogate for density defined in terms of the average value of the logarithms of the densities of the distributions of principal components for a given dimension. This density approximation is estimable readily from data. It accurately represents, in a monotone way, key features of small-ball approximations to density. Our results on estimators of the densities of principal component scores are also of independent interest; they reveal interesting shape differences that have not previously been considered. The statistical implications of these results and properties are identified and discussed, and practical ramifications are illustrated in numerical work. Cited in 52 Documents MSC: 62G07 Density estimation 62H25 Factor analysis and principal components; correspondence analysis 62G05 Nonparametric estimation Keywords:density estimation; dimension; eigenfunction; eigenvalue; functional data analysis; kernel methods; log-density estimation; nonparametric statistics; principal components analysis; probability density function; resolution level; scale space; Australian rainfall data Software:SiZer; fda (R); KernSmooth × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Besse, P. and Ramsay, J. O. (1986). Principal components analysis of sampled functions. Psychometrika 51 285-311. · Zbl 0623.62048 · doi:10.1007/BF02293986 [2] Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807-823. JSTOR: · Zbl 1072.62556 · doi:10.2307/2669996 [3] Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation. Ann. Statist. 28 408-428. · Zbl 1106.62318 · doi:10.1214/aos/1016218224 [4] Dabo-Niang, S. (2002). Estimation de la densité dans un espace de dimension infinie: Application aux diffusions. C. R. Math. Acad. Sci. Paris 334 213-216. · Zbl 0999.62028 · doi:10.1016/S1631-073X(02)02247-1 [5] Dabo-Niang, S., Ferraty, F. and Vieu, P. (2004a). Estimation du mode dans un espace vectoriel semi-normé. C. R. Math. Acad. Sci. Paris 339 659-662. · Zbl 1075.62024 · doi:10.1016/j.crma.2004.09.006 [6] Dabo-Niang, S., Ferraty, F. and Vieu, P. (2004b). Nonparametric unsupervised classification of satellite wave altimeter forms. In COMPSTAT 2004-Proceedings in Computational Statistics 879-886. Physica, Heidelberg. [7] Dabo-Niang, S., Ferraty, F. and Vieu, P. (2006). Mode estimation for functional random variable and its application for curves classification. Far East J. Theor. Stat. 18 93-119. · Zbl 1090.62035 [8] Delaigle, A. and Hall, P. (2008). Defining probability density for a distribution of random functions. Technical report. Dept. Mathematics and Statistics, Univ. Melbourne. · Zbl 1183.62061 [9] Ferraty, F., Goïa, A. and Vieu, P. (2002a). Régression non-paramétrique pour des variables aléatoires fonctionnelles mélangeantes. C. R. Math. Acad. Sci. Paris 334 217-220. · Zbl 0998.62036 · doi:10.1016/S1631-073X(02)02248-3 [10] Ferraty, F., Goïa, A. and Vieu, P. (2002b). Functional nonparametric model for time series: A fractal approach to dimension reduction. Test 11 317-344. · Zbl 1020.62089 · doi:10.1007/BF02595710 [11] Ferraty, F., Goïa, A. and Vieu, P. (2007a). On the using of modal curves for radar waveforms classification. Comput. Statist. Data Anal. 51 4878-4890. · Zbl 1162.62378 · doi:10.1016/j.csda.2006.07.012 [12] Ferraty, F., Goïa, A. and Vieu, P. (2007b). Nonparametric functional methods: New tools for chemometric analysis. In Statistical Methods for Biostatistics and Related Fields (W. Härdle, Y. Mori and P. Vieu, eds.) 245-264. Springer, Berlin. [13] Ferraty, F. and Vieu, P. (2002). The functional nonparametric model and application to spectrometric data. Comput. Statist. 17 545-564. · Zbl 1037.62032 · doi:10.1007/s001800200126 [14] Ferraty, F. and Vieu, P. (2003). Curves discrimination: A nonparametric functional approach. Comput. Statist. Data Anal. 44 161-173. · Zbl 1429.62241 [15] Ferraty, F. and Vieu, P. (2004). Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. J. Nonparametr. Stat. 16 111-125. · Zbl 1049.62039 · doi:10.1080/10485250310001622686 [16] Ferraty, F. and Vieu, P. (2006a). Functional nonparametric statistics in action. In The Art of Semiparametrics 112-129. Springer, Heidelberg. · Zbl 1271.62085 · doi:10.1007/3-7908-1701-5_8 [17] Ferraty, F. and Vieu, P. (2006b). Nonparametric Functional Data Analysis: Theory and Practice . Springer, Berlin. · Zbl 1119.62046 · doi:10.1007/0-387-36620-2 [18] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 681-691. JSTOR: · Zbl 0909.62030 · doi:10.1111/1467-9868.00148 [19] Gervini, D. (2008). Robust functional estimation using the spatial median and spherical principal components. Biometrika 95 587-600. · Zbl 1437.62469 · doi:10.1093/biomet/asn031 [20] Godtliebsen, F., Chaudhuri, P. and Marron, J. S. (2002). Significance in scale space for bivariate density estimation. J. Comput. Graph. Statist. 11 1-21. JSTOR: · doi:10.1198/106186002317375596 [21] Haldane, J. B. S. (1942). The mode and median of a nearly normal distribution with given cumulants. Biometrika 32 294-299. · Zbl 0063.01880 · doi:10.1093/biomet/32.3-4.294 [22] Hall, P. (1980). On the limiting behaviour of the mode and median of a sum of independent random variables. Ann. Probab. 8 419-430. · Zbl 0442.60049 · doi:10.1214/aop/1176994717 [23] Hall, P. and Heckman, N. (2002). Estimating and depicting the structure of a distribution of random functions. Biometrika 89 145-158. JSTOR: · Zbl 0996.62030 · doi:10.1093/biomet/89.1.145 [24] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109-126. · Zbl 1141.62048 · doi:10.1111/j.1467-9868.2005.00535.x [25] Hall, P. and Hosseini-Nasab, M. (2009). Theory for high-order bounds in functional principal components analysis. Math. Proc. Cambridge Philos. Soc. 146 225-256. · Zbl 1153.62050 · doi:10.1017/S0305004108001850 [26] Hall, P. and Vial, C. (2006). Assessing the finite dimensionality of functional data. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 689-705. · Zbl 1110.62085 · doi:10.1111/j.1467-9868.2006.00562.x [27] Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika 30 179-185. · Zbl 1367.62186 [28] Lavery, B., Kariko, A. and Nicholls, N. (1992). A historical rainfall data set for Australia. Aust. Met. Mag. 40 33-39. [29] Leng, X. and Müller, H.-G. (2006). Classification using functional data analysis for temporal gene expression data. Bioinformatics 22 68-76. [30] Peres-Neto, P. R., Jackson, D. A. and Somers, K. M. (2005). How many principal components?-Stopping rules for determining the number of non-trivial axes revisited. Comput. Statist. Data Anal. 49 974-997. · Zbl 1429.62223 [31] Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis (with discussion). J. Roy. Statist. Soc. Ser. B 53 539-572. JSTOR: · Zbl 0800.62314 [32] Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies . Springer, New York. · Zbl 1011.62002 · doi:10.1007/b98886 [33] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006 [34] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233-243. JSTOR: · Zbl 0800.62214 [35] Silverman, B. W. (1986). Density Estimation . Chapman and Hall, London. · Zbl 0617.62042 [36] Silverman, B. W. (1995). Incorporating parametric effects into functional principal components analysis. J. Roy. Statist. Soc. Ser. B 57 673-689. JSTOR: · Zbl 0827.62051 [37] Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. Ann. Statist. 24 1-24. · Zbl 0853.62044 · doi:10.1214/aos/1033066196 [38] Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika 41 321-327. · Zbl 0336.62041 · doi:10.1007/BF02293557 [39] Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing . Chapman and Hall, London. · Zbl 0854.62043 [40] Zwick, W. R. and Velicer, W. F. (1986). Factor influencing five rules for determining the number of components to retain. Psychol. Bull. 99 432-442. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.