×

Multivariate quantiles and multiple-output regression quantiles: from \(L_{1}\) optimization to halfspace depth. (English) Zbl 1183.62088

Summary: A new multivariate concept of quantiles, based on a directional version of R. Koenker and G. Bassett’s [Econometrica 46, 33–50 (1978; Zbl 0373.62038)] traditional regression quantiles, is introduced for multivariate location and multiple-output regression problems. In their empirical version, those quantiles can be computed efficiently via linear programming techniques. Consistency, Bahadur representation and asymptotic normality results are established. Most importantly, the contours generated by those quantiles are shown to coincide with the classical halfspace depth contours associated with the name of J. W. Tukey [Proc. Int. Congr. Math., Vancouver 1974, Vol. 2, 523–531 (1975; Zbl 0347.62002)]. This relation does not only allow for efficient depth contour computations by means of parametric linear programming, but also for transferring from the quantile to the depth universe such asymptotic results as Bahadur representations. Finally, linear programming duality opens the way to promising developments in depth-related multivariate rank-based inference.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62G20 Asymptotic properties of nonparametric inference
90C05 Linear programming
62A09 Graphical methods in statistics
62J05 Linear regression; mixed models
90C90 Applications of mathematical programming

Software:

AS 307; quantreg

References:

[1] Abdous, B. and Theodorescu, R. (1992). Note on the spatial quantile of a random vector. Statist. Probab. Lett. 13 333-336. · Zbl 0743.62040 · doi:10.1016/0167-7152(92)90043-5
[2] Bassett, G. W., Koenker, R. and Kordas, G. (2004). Pessimistic portfolio allocation and Choquet expected utility. J. Fin. Econometrics 2 477-492.
[3] Breckling, J. and Chambers, R. (1988). M -quantiles. Biometrika 75 761-771. JSTOR: · Zbl 0653.62024 · doi:10.1093/biomet/75.4.761
[4] Breckling, J., Kokic, P. and Lübke, O. (2001). A note on multivariate M-quantiles. Statist. Probab. Lett. 55 39-44. · Zbl 0987.62039 · doi:10.1016/S0167-7152(01)00125-0
[5] Chakraborty, B. (2001). On affine equivariant multivariate quantiles. Ann. Inst. Statist. Math. 53 380-403. · Zbl 1027.62035 · doi:10.1023/A:1012478908041
[6] Chakraborty, B. (2003). On multivariate quantile regression. J. Statist. Plann. Inference 110 109-132. · Zbl 1030.62046 · doi:10.1016/S0378-3758(01)00277-4
[7] Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862-872. JSTOR: · Zbl 0869.62040 · doi:10.2307/2291681
[8] Chen, W. W. and Deo, R. S. (2004). Power transformations to induce normality and their applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 117-130. JSTOR: · Zbl 1063.62065 · doi:10.1111/j.1467-9868.2004.00435.x
[9] Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist. 20 1803-1827. · Zbl 0776.62031 · doi:10.1214/aos/1176348890
[10] Dudley, R. M. and Koltchinskii, V. I. (1992). The spatial quantiles. Unpublished manuscript. · Zbl 0965.62048
[11] Fukuda, K. and Rosta, V. (2005). Data depth and maximum feasible subsystems. In Graph Theory and Combinatorial Optimization (D. Avis, A. Hertz and O. Marcotte, eds.) 37-67. Springer, New York. · Zbl 1098.90100 · doi:10.1007/0-387-25592-3_3
[12] Gutenbrunner, C. and Jurečková, J. (1992). Regression rank scores and regression quantiles. Ann. Statist. 20 305-330. · Zbl 0759.62015 · doi:10.1214/aos/1176348524
[13] Haberman, S. J. (1989). Concavity and estimation. Ann. Statist. 17 1631-1661. · Zbl 0699.62027 · doi:10.1214/aos/1176347385
[14] Heinz, G., Peterson, L. J., Johnson, R. W. and Kerk, C. J. (2003). Exploring relationships in body dimensions. J. Statist. Education 11 . Available at http://www.amstat.org/publications/jse/v11n2/datasets.heinz.html.
[15] Hettmansperger, T. P., Nyblom, J. and Oja, H. (1992). On multivariate notions of sign and rank. In L 1 - Statistical Analysis and Related Methods (Neuchâtel, 1992) 267-278. North-Holland, Amsterdam. · Zbl 0763.62026
[16] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38 . Cambridge Univ. Press, Cambridge. · Zbl 1111.62037
[17] Koenker, R. (2007). Quantile regression in R: A vignette. Available at http://cran.r-project.org.
[18] Koenker, R. and Bassett, G. J. (1978). Regression quantiles. Econometrica 46 33-50. JSTOR: · Zbl 0373.62038 · doi:10.2307/1913643
[19] Koltchinskii, V. (1997). M-estimation, convexity and quantiles. Ann. Statist. 25 435-477. · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[20] Kong, L. and Mizera, I. (2008). Quantile tomography: Using quantiles with multivariate data. · Zbl 1359.62175
[21] Laine, B. (2001). Depth contours as multivariate quantiles: A directional approach. Unpublished Master dissertation (advisor M. Hallin). Univ. Libre de Bruxelles, Brussels.
[22] Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Statist. 27 783-840. · Zbl 0984.62037 · doi:10.1214/aos/1018031260
[23] Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès, T., Souvaine, D., Streinu, I. and Struyf, A. (2003). Efficient computation of location depth contours by methods of computational geometry. Stat. Comput. 13 153-162. · Zbl 0988.65005 · doi:10.1023/A:1021979409012
[24] Mizera, I. (2002). On depth and deep points: A calculus. Ann. Statist. 30 1681-1736. · Zbl 1039.62046 · doi:10.1214/aos/1043351254
[25] Niemiro, W. (1992). Asymptotics for M -estimators defined by convex minimization. Ann. Statist. 20 1514-1533. · Zbl 0786.62040 · doi:10.1214/aos/1176348782
[26] Paindaveine, D. and Šiman, M. (2009). On directional multiple-output quantile regression. ECARES Working Paper 2009-011. · Zbl 1328.62311
[27] Paindaveine, D. and Šiman, M. (2010). Computing multiple-output regression quantile regions. Submitted. · Zbl 1244.62060
[28] Rousseeuw, P. J. and Ruts, I. (1996). Algorithm AS 307: Bivariate location depth. J. Appl. Stat. 45 516-526. · Zbl 0905.62002
[29] Rousseeuw, P. J. and Hubert, M. (1999). Regression depth. J. Amer. Statist. Assoc. 94 388-433. With discussion and a reply by the authors and Stefan Van Aelst. JSTOR: · Zbl 1007.62060 · doi:10.2307/2670155
[30] Rousseeuw, P. J. and Ruts, I. (1999). The depth function of a population distribution. Metrika 49 213-244. · Zbl 1093.62540 · doi:10.1007/s001840050017
[31] Rousseeuw, P. J. and Struyf, A. (1998). Computing location depth and regression depth in higher dimensions. Stat. Comput. 8 193-203.
[32] Rousseeuw, P. J. and Struyf, A. (2004). Characterizing angular symmetry and regression symmetry. J. Statist. Plann. Inference 122 161-173. Contemporary data analysis: Theory and methods. · Zbl 1040.62041 · doi:10.1016/j.jspi.2003.06.015
[33] Serfling, R. (2002). Quantile functions for multivariate analysis: Approaches and applications. Statist. Neerlandica 56 214-232. Special issue: Frontier research in theoretical statistics, 2000 (Eindhoven). · Zbl 1076.62054 · doi:10.1111/1467-9574.00195
[34] Serfling, R. (2010). Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardization. J. Nonparametr. Statist. , · Zbl 1203.62103
[35] Struyf, A. and Rousseeuw, P. J. (2005). Halfspace depth and regression depth characterize the empirical distribution. J. Multivariate Anal. 69 135-153. · Zbl 1070.62509 · doi:10.1006/jmva.1998.1804
[36] Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) 2 523-531. Canad. Math. Congress, Montreal. · Zbl 0347.62002
[37] Wei, Y. (2008). An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. J. Amer. Statist. Assoc. 103 397-409. · Zbl 1469.62241 · doi:10.1198/016214507000001472
[38] Wei, Y., Pere, A., Koenker, R. and He, X. (2005). Quantile regression methods for reference growth charts. Stat. Med. 25 1369-1382. · doi:10.1002/sim.2271
[39] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist. 28 461-482. · Zbl 1106.62334 · doi:10.1214/aos/1016218226
[40] Zuo, Y. and Serfling, R. (2000). Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. 28 483-499. · Zbl 1105.62343 · doi:10.1214/aos/1016218227
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.