×

Covariate adjusted functional principal components analysis for longitudinal data. (English) Zbl 1183.62102

Summary: Classical multivariate principal component analysis has been extended to functional data and termed functional principal component analysis (FPCA). Most existing FPCA approaches do not accommodate covariate information, and it is the goal of this paper to develop two methods that do. In the first approach, both the mean and covariance functions depend on the covariate \(Z\) and time scale \(t\) while in the second approach only the mean function depends on the covariate \(Z\). Both new approaches accommodate additional measurement errors and functional data sampled at regular time grids as well as sparse longitudinal data sampled at irregular time grids. The first approach to fully adjust both the mean and covariance functions adapts more to the data but is computationally more intensive than the approach to adjust the covariate effects on the mean function only. We develop general asymptotic theory for both approaches and compare their performance numerically through simulation studies and a data set.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
62M15 Inference from stochastic processes and spectral analysis
62G20 Asymptotic properties of nonparametric inference
65C60 Computational problems in statistics (MSC2010)

Software:

fda (R)

References:

[1] Besse, P. and Ramsay, J. (1986). Principal components analysis of sampled functions. Psychometrika 51 285-311. · Zbl 0623.62048 · doi:10.1007/BF02293986
[2] Bhattacharya, P. K. and Müller, H. G. (1993). Asymptotics for nonparametric regression. Sankhyā Ser. A 55 420-441. · Zbl 0806.62028
[3] Boente, G. and Fraiman, R. (2000). Kernel-based functional principal components. Statist. Probab. Lett. 48 335-345. · Zbl 0997.62024 · doi:10.1016/S0167-7152(00)00014-6
[4] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Application . Springer, New York. · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9
[5] Cardot, H. (2000). Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. J. Nonparametr. Stat. 12 503-538. · Zbl 0951.62030 · doi:10.1080/10485250008832820
[6] Cardot, H. (2006). Conditional functional principal components analysis. Scand. J. Statist. 34 317-335. · Zbl 1142.62041 · doi:10.1111/j.1467-9469.2006.00521.x
[7] Carey, J. R., Liedo, P., Müller, H. G., Wang, J. L., Sentürk, D. and Harshman, L. (2005). Biodemography of a long-lived tephritid: Reproduction and longevity in a large cohort of female mexican fruit flies, Anastrepha Ludens. Experimental Gerontology 40 793-800.
[8] Castro, P. E., Lawton, W. H. and Sylvestre, E. A. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics 28 329-337. · Zbl 0615.62074 · doi:10.2307/1268982
[9] Chiou, J.-M., Müller, H.-G. and Wang, J.-L. (2003). Functional quasi-likelihood regression models with smooth random effects. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 405-423. · Zbl 1065.62065 · doi:10.1111/1467-9868.00393
[10] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications of statistical inference. J. Multivariate Anal. 12 136-154. · Zbl 0539.62064 · doi:10.1016/0047-259X(82)90088-4
[11] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications . Chapman and Hall, London. · Zbl 0873.62037
[12] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice . Springer, New York. · Zbl 1119.62046 · doi:10.1007/0-387-36620-2
[13] Guo, W. (2002). Funcitonal mixed effects models. Biometrics 58 121-128. JSTOR: · Zbl 1209.62072 · doi:10.1111/j.0006-341X.2002.00121.x
[14] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109-126. · Zbl 1141.62048 · doi:10.1111/j.1467-9868.2005.00535.x
[15] Hall, P., Müller, H.-G. and Wang, J.-L. (2006). Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 1493-1517. · Zbl 1113.62073 · doi:10.1214/009053606000000272
[16] James, G. M., Hastie, T. J. and Suger, C. A. (2000). Principal components models for sparse functional data. Biometrika 87 587-602. JSTOR: · Zbl 0962.62056 · doi:10.1093/biomet/87.3.587
[17] Kneip, A. and Utikal, K. (2001). Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc. 96 519-532. JSTOR: · Zbl 1019.62060 · doi:10.1198/016214501753168235
[18] Mas, A. and Menneteau, L. (2003). High Dimensional Probability III . 127-134. Birkhäuser, Basel. · Zbl 1053.60002
[19] Paul, D. and Peng, J. (2009). Consistency of restricted maximum likelihood estimators of principal components. Ann. Statist. 37 1229-1271. · Zbl 1161.62032 · doi:10.1214/08-AOS608
[20] Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data. J. Comput. Graph. Statist.
[21] Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies . Springer, New York. · Zbl 1011.62002 · doi:10.1007/b98886
[22] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006
[23] Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics 14 1-17. · Zbl 0079.35704 · doi:10.2307/2527726
[24] Rice, J. and Silverman, B. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233-243. JSTOR: · Zbl 0800.62214
[25] Rice, J. A. (2004). Functional and longitudinal data analysis: Prospectives on smoothing. Statist. Sinica 14 631-647. · Zbl 1073.62033
[26] Rice, J. A. and Wu, C. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57 253-259. JSTOR: · Zbl 1209.62061 · doi:10.1111/j.0006-341X.2001.00253.x
[27] Shi, M., Weiss, R. and Taylor, J. (1996). An analysis of paediatric cd4 counts for acquired immune deficiency syndrome using flexible random curves. J. Appl. Stat. 45 151-163. · Zbl 0875.62574 · doi:10.2307/2986151
[28] Wang, Y. (1998). Mixed-effects smoothing spline anova. J. R. Stat. Soc. Ser. C Stat. Methodol. 60 159-174. JSTOR: · Zbl 0909.62034 · doi:10.1111/1467-9868.00115
[29] Wu, H. and Zhang, J.-T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches . Wiley, Hoboken, NJ. · Zbl 1127.62041 · doi:10.1002/0470009675
[30] Yao, F. (2007). Asymptotic distributions of nonparametric regression estimators for longitudinal of functional data. J. Multivariate Anal. 98 40-56. · Zbl 1102.62040 · doi:10.1016/j.jmva.2006.08.007
[31] Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-590. · Zbl 1117.62451 · doi:10.1198/016214504000001745
[32] Zhang, D., Lin, X., Raz, J. and Sowers, F. (1998). Semiparametric stochastic mixed models for longitudinal data. J. Amer. Statist. Assoc. 93 710-719. JSTOR: · Zbl 0918.62039 · doi:10.2307/2670121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.