zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized integer-valued random coefficient for a first order structure autoregressive (RCINAR) process. (English) Zbl 1183.62149
Summary: A random coefficient autoregressive process for count data based on a generalized thinning operator is presented. Existence and weak stationarity conditions for these models are established. For the particular case of the (generalized) binomial thinning, it is proved that the necessary and sufficient conditions for weak stationarity are the same as those for continuous-valued AR(1) processes. These kinds of processes are appropriate for modelling nonlinear integer-valued time series. They allow for over-dispersion and are appropriate when including covariates. Model parameters estimators are calculated and their properties studied analytically and/or through simulation.

62M10Time series, auto-correlation, regression, etc. (statistics)
65C60Computational problems in statistics
Full Text: DOI
[1] Brännäs, K., 1995. Explanatory variables in the AR(1) count data model. Umeå Economic Studies, 381.
[2] Du, J. -G.; Li, Y.: The integer-valued autoregressive $(INAR(p))$ model, J. time ser. Anal. 12, 130-142 (1991) · Zbl 0727.62084 · doi:10.1111/j.1467-9892.1991.tb00073.x
[3] Gomes, D., Canto e Castro, L., 2003. Estimação dos parâmetros do modelo RCINAR(1) com série explicativa i.i.d. Nota e Comunicações, CEAUL, 7/2003.ISBN 972-8628-80-3.
[4] Grunwald, G., Hyndman, R., Tedesco, L., Tweedie, R., 1997. A unified view of linear AR(1) models. \langle citeseer.ist.psu.edu/grunwald97unified.html\rangle .
[5] Hwang, S.; Basawa, I.: Parameter estimation for generalized random coefficient autoregressive processes, J. statist. Plann. inference 68, 323-337 (1998) · Zbl 0942.62102 · doi:10.1016/S0378-3758(97)00147-X
[6] Latour, A.: Existence and stochastic structure of a non-negative integer-valued autoregressive process, J. time ser. Anal. 19, No. 4, 439-455 (1998) · Zbl 1127.62402 · doi:10.1111/1467-9892.00102
[7] Mckenzie, E.: Discrete variate time series, Handbook of statistics 21, 573-606 (2003) · Zbl 1064.62560
[8] Mckenzie, E.: Some simple models for discrete variate time series, Water resources bull. 21, 645-650 (1985)
[9] Nicholls, D.; Quinn, B.: Random coefficient autoregressive models: an introduction, (1982) · Zbl 0497.62081
[10] Pourahmadi, M.: On stationarity of the solution of a doubly stochastic model, J. time ser. Anal. 7, No. 2, 123-131 (1986) · Zbl 0595.60041 · doi:10.1111/j.1467-9892.1986.tb00490.x
[11] Steutel, F.; Van Harn, K.: Discrete analogues of self-decomposability and stability, Ann. probab. 7, 893-899 (1979) · Zbl 0418.60020 · doi:10.1214/aop/1176994950