zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multi-parameter family of three-step eighth-order iterative methods locating a simple root. (English) Zbl 1183.65049
Summary: A multi-parameter family of three-step eighth-order iterative methods free from second derivatives is proposed to find a simple root of nonlinear algebraic equations. Convergence analysis as well as numerical experiments confirms the eighth-order convergence and asymptotic error constants.

65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Ahlfors, Lars V.: Complex analysis, (1979) · Zbl 0395.30001
[2] Bi, W.; Ren, H.; Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations, Journal of computational and applied mathematics 225, 105-112 (2009) · Zbl 1161.65039 · doi:10.1016/j.cam.2008.07.004
[3] Bi, W.; Wu, Q.; Ren, H.: A new family of eighth-order iterative methods for solving nonlinear equations, Applied mathematics and computation 214, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[4] Chun, C.; Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods, Applied mathematics and computation 193, 389-394 (2007) · Zbl 1193.65055 · doi:10.1016/j.amc.2007.03.074
[5] Hörmander, Lars: An introduction to complex analysis in several variables, (1973) · Zbl 0271.32001
[6] Jarratt, P.: Some fourth-order multipoint iterative methods for solving equations, Math. comput. 20, No. 95, 434-437 (1966) · Zbl 0229.65049 · doi:10.2307/2003602
[7] King, R.: A family of fourth-order methods for nonlinear equations, SIAM journal of numerical analysis 10, No. 5, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[8] Kou, J.; Li, Y.; Wang, X.: Some variants of Ostrowski’s method with seventh-order convergence, Journal of computational and applied mathematics 209, 105-112 (2007) · Zbl 1130.41006 · doi:10.1016/j.cam.2006.10.073
[9] Krantz, S. G.: Function theory of several complex variables, (1982) · Zbl 0471.32008
[10] Ren, H.; Wu, Q.; Bi, W.: New variants of jarratts method with sixth-order convergence, Numerical algorithm (2009) · Zbl 1187.65052
[11] Traub, J. F.: Iterative methods for the solution of equations, (1982) · Zbl 0472.65040
[12] Wang, X.; Kou, J.; Li, Y.: A variant of jarratt method with sixth-order convergence, Applied mathematics and computation 204, 14-19 (2008) · Zbl 1168.65346 · doi:10.1016/j.amc.2008.05.112
[13] Wang, X.; Liu, L.: Two new families of sixth-order methods for solving non-linear equations, Applied mathematics and computation 213, 73-78 (2008) · Zbl 1170.65032 · doi:10.1016/j.amc.2009.03.007
[14] Wolfram, Stephen: The Mathematica book, (1999)