zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite element formulation based on proper orthogonal decomposition for parabolic equations. (English) Zbl 1183.65122
The authors are concerned with the study of the proper orthogonal decomposition (POD) method used to a usual finite element (FE) formulation for parabolic equations so that the usual finite element formulation is reduced into a (POD)-(FE) formulation with lower dimensional numbers and enough high accuracy. The errors between the reduced (POD)-(FE) solution and the usual (FE) solution are analyzed. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions.

65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35K61Nonlinear parabolic equations, nonlinear initial boundary value problems
65M15Error bounds (IVP of PDE)
Full Text: DOI
[1] ThomĂ©e V. Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer, 1997 · Zbl 0884.65097
[2] Luo Z D. Mixed Finite Element Methods and Applications. Beijing: Science Press, 2006
[3] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996 · Zbl 0890.76001
[4] Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990 · Zbl 0711.62052
[5] Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 2002 · Zbl 1011.62064
[6] Crommelin D T, Majda A J. Strategies for model reduction: comparing different optimal bases. J Atmos Sci, 61: 2306--2317 (2004)
[7] Majda A J, Timofeyev I, Vanden-Eijnden E. Systematic strategies for stochastic mode reduction in climate. J Atmos Sci, 60: 1705--1723 (2003) · doi:10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2
[8] Selten F. Barophilic empirical orthogonal functions as basis functions in an atmospheric model. J Atmos Sci, 54: 2100--2114 (1997)
[9] Lumley J L. Coherent structures in turbulence. In: Meyer R E, ed. Transition and Turbulence. New York: Academic Press, 1981 · Zbl 0486.76073
[10] Aubry N, Holmes P, Lumley J L, et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Dyn, 192: 115--173 (1988) · Zbl 0643.76066
[11] Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III. Quart Appl Math, 45(3): 561--590 (1987) · Zbl 0676.76047
[12] Joslin R D, Gunzburger M D, Nicolaides R A, et al. A self-contained automated methodology for optimal flow control validated for transition delay. AIAA J, 35: 816--824 (1997) · Zbl 0901.76067 · doi:10.2514/2.7452
[13] Ly H V, Tran H T. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quart Appl Math, 60: 631--656 (2002) · Zbl 1146.76631
[14] Moin P, Moser R D. Characteristic-eddy decomposition of turbulence in channel. J Fluid Mech, 200: 417--509 (1989) · Zbl 0659.76062 · doi:10.1017/S0022112089000741
[15] Rajaee M, Karlsson S K F, Sirovich L. Low dimensional description of free shear flow coherent structures and their dynamical behavior. J Fluid Mech, 258: 1401--1402 (1994) · Zbl 0800.76190 · doi:10.1017/S0022112094003228
[16] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 90: 117--148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[17] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 40(2): 492--515 (2002) · Zbl 1075.65118 · doi:10.1137/S0036142900382612
[18] Adams R A. Sobolev Space. New York: Academic Press, 1975
[19] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978 · Zbl 0383.65058
[20] Luo Z D, Chen J, Navon I M, et al. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. SIAM J Num Anal, 47(1): 1--19 (2008) · Zbl 05686537 · doi:10.1137/070689498
[21] Luo Z D, Chen J, Navon I M, et al. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Internat J Numer Methods Fluids, published online: DOI: 10.1002/fld.1900 · Zbl 1161.76032