zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions. (English) Zbl 1183.80093
In this paper, the Stefan problem with time-dependent temperature applied to exchange surface is considered. The approach is based on the refined integral heat balance technique. The method is applied to phase change in the half-plane and an ordinary differential equation is obtained for the solid/liquid interface. The results are compared to those obtained by integral heat balance, perturbation technique and numerical methods.

80A22Stefan problems, phase changes, etc.
Full Text: DOI
[1] Ozisik, N.: Heat conduction. (1993)
[2] Crank, J.: Free and moving boundary problems. (1984) · Zbl 0547.35001
[3] Hsieh, C. K.: Exact solutions of Stefan problems for a heat front moving at constant velocity in a quasi-steady state. Int. J. Heat mass transfer 38, 71-79 (1995) · Zbl 0925.76874
[4] Caldwell, J.; Kwan, Y. Y.: On the perturbation method for the Stefan problem with time-dependent boundary conditions. Int. J. Heat mass transfer 46, 1497-1501 (2003) · Zbl 1021.80004
[5] Savoviç, S.; Caldwell, J.: Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. Int. J. Heat mass transfer 46, 2911-2916 (2003) · Zbl 1041.80004
[6] Chakraborty, S.; Dutta, P.: An analytical solution for conduction-dominated unidirectional solidification of binary mixtures. App. math. Model. 26, 545-561 (2002) · Zbl 1117.76313
[7] Coriell, S. R.; Mcfadden, G. B.; Sekerka, R. F.; Boettinger, W. J.: Multiple similarity for solidification and melting. J. cryst. Growth 191, 573-585 (1998)
[8] Pavel, P. M.; Ene, N.: Planar solidification solution with mushy zone. Energy convers. Manage. 44, 2977-2989 (2003)
[9] Yang, Z.; Sen, M.; Paolucci, S.: Solidification in finite slab with convective cooling and shrinkage. Appl. math. Model. 27, 733-762 (2003) · Zbl 1056.80005
[10] Wood, A. S.: A new look at the heat balance integral method. Appl. math. Model. 25, 815-824 (2001) · Zbl 0992.80008
[11] Sadoun, N.; Si-Ahmed, E. K.: A new analytical expression of the freezing constant in the Stefan problem with initial superheat. Numer. meth. Therm. probl. 9, 843-854 (1995)
[12] Mennig, J.; Ozisik, M. N.: Coupled integral equation approach for solving melting or solidification. Int. J. Heat mass transfer 28, 1481-1485 (1985) · Zbl 0576.76103
[13] Bell, G. E.: A refinement of the heat balance integral method applied to a melting problem. Int. J. Heat mass transfer 21, 1357-1362 (1978)
[14] Mosally, F.; Wood, A. S.; Al-Fhaid, A.: An exponential heat balance integral method. Appl. math. Comput. 130, 87-100 (2002) · Zbl 1015.80502
[15] Sudhakar, B.: On integral iterative formulation in classical Stefan problem. Chem. eng. Sci. 47, 3158-3162 (1992)
[16] Hill, J.: One dimensional Stefan problem: an introduction. (1987) · Zbl 0698.35002
[17] Barragan, V. M.; Arias, J. M.; Dominguez, M.; Garcia, C.: Testing the computer assisted solution of the electrical analogy in a heat transfer process with a phase change which has an analytical solution. Int. J. Refrig. 24, 532-537 (2001)
[18] Gupta, R. S.; Kumar, D.: Variable time step methods for one-dimensional Stefan problem with mixed boundary condition. Int. J. Heat mass transfer 24, 251-259 (1981) · Zbl 0462.76095
[19] Stefan, J.: Uber die theorie der eisbildung, insbesondere uber die eisbildung im polarmeere. Annalen der physik und chemie 42 (1891) · Zbl 23.1188.04